Understanding and design of metallic alloys guided by phase-field simulations

被引:119
|
作者
Zhao, Yuhong [1 ,2 ,3 ]
机构
[1] Univ Sci & Technol Beijing, Beijing Adv Innovat Ctr Mat Genome Engn, Beijing 100083, Peoples R China
[2] North Univ China, Collaborat Innovat Ctr, Sch Mat Sci & Engn, Minist Educ High performance Al & Mg Alloy Mat, Taiyuan 030051, Peoples R China
[3] Inst Mat Intelligent Technol, Liaoning Acad Mat, Shenyang 110004, Peoples R China
基金
中国国家自然科学基金;
关键词
SOLIDIFICATION CRACKING SUSCEPTIBILITY; MECHANICAL-PROPERTIES; MULTIPHASE-FIELD; AL-MG; THERMOMECHANICAL PROPERTIES; PRECIPITATE MORPHOLOGY; COMPUTER-SIMULATION; CRYSTAL SIMULATION; MICROSTRUCTURE; MODEL;
D O I
10.1038/s41524-023-01038-z
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Phase-field method (PFM) has become a mainstream computational method for predicting the evolution of nano and mesoscopic microstructures and properties during materials processes. The paper briefly reviews latest progresses in applying PFM to understanding the thermodynamic driving forces and mechanisms underlying microstructure evolution in metallic materials and related processes, including casting, aging, deformation, additive manufacturing, and defects, etc. Focus on designing alloys by integrating PFM with constitutive relations and machine learning. Several examples are presented to demonstrate the potential of integrated PFM in discovering new multi-scale phenomena and high-performance alloys. The article ends with prospects for promising research directions.
引用
收藏
页数:25
相关论文
共 50 条
  • [41] Extending Density Phase-Field Simulations to Dynamic Regimes
    Jacobson, David
    Kamachali, Reza Darvishi
    Thompson, Gregory Bruce
    METALS, 2023, 13 (08)
  • [42] Large deformation framework for phase-field simulations at the mesoscale
    Borukhovich, Efim
    Engels, Philipp S.
    Mosler, Joern
    Shchyglo, Oleg
    Steinbach, Ingo
    COMPUTATIONAL MATERIALS SCIENCE, 2015, 108 : 367 - 373
  • [43] Erratum to: Selected issues of phase-field crystal simulations
    H. Emmerich
    L. Gránásy
    H. Löwen
    The European Physical Journal Plus, 126
  • [45] Stochastic phase-field simulations of symmetric alloy solidification
    Benítez, R
    Ramírez-Piscina, L
    FLUCTUATION AND NOISE LETTERS, 2004, 4 (03): : L505 - L510
  • [46] Analytics for microstructure datasets produced by phase-field simulations
    Steinmetz, Philipp
    Yabansu, Yuksel C.
    Hoetzer, Johannes
    Jainta, Marcus
    Nestler, Britta
    Kalidindi, Surya R.
    ACTA MATERIALIA, 2016, 103 : 192 - 203
  • [47] Multicomponent alloy solidification: Phase-field modeling and simulations
    Nestler, B
    Garcke, H
    Stinner, B
    PHYSICAL REVIEW E, 2005, 71 (04):
  • [48] Modeling melt convection in phase-field simulations of solidification
    Beckermann, C
    Diepers, HJ
    Steinbach, I
    Karma, A
    Tong, X
    JOURNAL OF COMPUTATIONAL PHYSICS, 1999, 154 (02) : 468 - 496
  • [49] SymPhas-General Purpose Software for Phase-Field, Phase-Field Crystal, and Reaction-Diffusion Simulations
    Silber, Steven A.
    Karttunen, Mikko
    ADVANCED THEORY AND SIMULATIONS, 2022, 5 (01)
  • [50] Phase-field simulations of dynamic wetting of viscoelastic fluids
    Yue, Pengtao
    Feng, James J.
    JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 2012, 189 : 8 - 13