Understanding and design of metallic alloys guided by phase-field simulations

被引:119
|
作者
Zhao, Yuhong [1 ,2 ,3 ]
机构
[1] Univ Sci & Technol Beijing, Beijing Adv Innovat Ctr Mat Genome Engn, Beijing 100083, Peoples R China
[2] North Univ China, Collaborat Innovat Ctr, Sch Mat Sci & Engn, Minist Educ High performance Al & Mg Alloy Mat, Taiyuan 030051, Peoples R China
[3] Inst Mat Intelligent Technol, Liaoning Acad Mat, Shenyang 110004, Peoples R China
基金
中国国家自然科学基金;
关键词
SOLIDIFICATION CRACKING SUSCEPTIBILITY; MECHANICAL-PROPERTIES; MULTIPHASE-FIELD; AL-MG; THERMOMECHANICAL PROPERTIES; PRECIPITATE MORPHOLOGY; COMPUTER-SIMULATION; CRYSTAL SIMULATION; MICROSTRUCTURE; MODEL;
D O I
10.1038/s41524-023-01038-z
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Phase-field method (PFM) has become a mainstream computational method for predicting the evolution of nano and mesoscopic microstructures and properties during materials processes. The paper briefly reviews latest progresses in applying PFM to understanding the thermodynamic driving forces and mechanisms underlying microstructure evolution in metallic materials and related processes, including casting, aging, deformation, additive manufacturing, and defects, etc. Focus on designing alloys by integrating PFM with constitutive relations and machine learning. Several examples are presented to demonstrate the potential of integrated PFM in discovering new multi-scale phenomena and high-performance alloys. The article ends with prospects for promising research directions.
引用
收藏
页数:25
相关论文
共 50 条
  • [1] Understanding and design of metallic alloys guided by phase-field simulations
    Yuhong Zhao
    npj Computational Materials, 9
  • [2] Understanding electrocaloric cooling of ferroelectrics guided by phase-field modeling
    Gao, Rongzhen
    Shi, Xiaoming
    Wang, Jing
    Huang, Houbing
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2022, 105 (06) : 3689 - 3714
  • [3] Design of super-elastic freestanding ferroelectric thin films guided by phase-field simulations
    Guo, Changqing
    Huang, Houbing
    MICROSTRUCTURES, 2022, 2 (04):
  • [4] New understanding of static recrystallization from phase-field simulations
    Li, Runguang
    Zhang, Yubin
    Moelans, Nele
    Yadav, Vishal
    Jensen, Dorte Juul
    MRS BULLETIN, 2024, 49 (06) : 594 - 602
  • [5] Understanding the Effect of Electrochemical Properties and Microstructure on the Microgalvanic Corrosion of Mg Alloys via Phase-Field Simulations
    Goel, Vishwas
    Montiel, David
    Thornton, Katsuyo
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2023, 170 (10)
  • [6] Phase-field simulations of solidification of Al-Cu binary alloys
    龙文元
    蔡启舟
    陈立亮
    魏伯康
    Transactions of Nonferrous Metals Society of China, 2004, (02) : 291 - 296
  • [7] Phase-field simulations of velocity selection in rapidly solidified binary alloys
    Fan, Jun
    Greenwood, Michael
    Haataja, Mikko
    Provatas, Nikolas
    PHYSICAL REVIEW E, 2006, 74 (03):
  • [8] Phase-field simulations of solidification of Al-Cu binary alloys
    Long, WY
    Cai, QZ
    Chen, LL
    Wei, BK
    TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA, 2004, 14 (02) : 291 - 296
  • [9] A metallic glass composite: Phase-field simulations and experimental analysis of microstructure evolution
    Nestler, B.
    Danilov, D.
    Bracchi, A.
    Huang, Y. -L.
    Niermann, T.
    Seibt, M.
    Schneider, S.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2007, 452 : 8 - 14
  • [10] Phase-field simulations of isomorphous binary alloys subject to isothermal and directional solidification
    Allen, Jeffrey B.
    MULTIDISCIPLINE MODELING IN MATERIALS AND STRUCTURES, 2021, 17 (05) : 955 - 973