GLOBAL SOLVABILITY AND LARGE TIME BEHAVIOR IN A TWO-SPECIES CHEMOTAXIS-CONSUMPTION MODEL

被引:0
|
作者
Ren, Guoqiang [1 ,2 ]
Xiang, Tian [3 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Math & Stat, Wuhan 430074, Peoples R China
[2] Huazhong Univ Sci & Technol, Hubei Key Lab Engn Modeling & Sci Comp, Wuhan 430074, Peoples R China
[3] Rebmin Univ China, Inst Math Sci & Sch Math Sci, Beijing 100872, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Two-species chemotaxis model; signal absorption; global existence; boundedness; eventual smoothness; convergence; PREDATOR-PREY MODEL; BLOW-UP; ASYMPTOTIC-BEHAVIOR; STOKES SYSTEM; EVENTUAL SMOOTHNESS; CLASSICAL-SOLUTIONS; HAPTOTAXIS MODEL; BOUNDEDNESS; EXISTENCE; STABILIZATION;
D O I
10.3934/dcdsb.2023009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we study global existence, eventual smoothness and large time behavior of positive solutions for the following two-species chemo-taxis consumption model: { ut = Delta u - X1 del.(u del w), x is an element of Omega, t > 0, vt = Delta v - X2 del. (v del w), x is an element of Omega, t > 0, wt = Delta w - (alpha u + beta v)w, x is an element of Omega, t > 0, in a bounded and smooth domain Omega subset of R-n(n = 2, 3, 4,5) with nonnegative initial data u0, v0, w0 and homogeneous Neumann boundary data. Here, the parameters X1, X2 are positive and alpha, beta are nonnegative. In such setup, for all reasonably regular initial data and for all parameters, we show global existence and uniform-in-time boundedness of classical solutions in 2D, global existence of weak solutions in nD (n = 3, 4, 5), and, finally, we show eventual smoothness and uniform convergence of global weak solutions in 3D convex domains. Our 2D boundedness removes a smallness condition required in [50] and other findings improve and extend the existing knowledge about one-species chemotaxis-consumption models in the literature.
引用
收藏
页码:5325 / 5354
页数:30
相关论文
共 50 条
  • [21] Global existence to a chemotaxis-consumption model with nonlinear diffusion and singular sensitivity
    Jia, Zhe
    Yang, Zuodong
    APPLICABLE ANALYSIS, 2019, 98 (16) : 2916 - 2929
  • [22] GLOBAL EXISTENCE AND ASYMPTOTIC BEHAVIOR IN A TWO-SPECIES CHEMOTAXIS SYSTEM WITH SIGNAL PRODUCTION
    Zhou, Xing
    Ren, Guoqiang
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2024, 29 (04): : 1771 - 1797
  • [23] Global existence and asymptotic behavior in a two-species chemotaxis system with logistic source
    Ren, Guoqiang
    Liu, Bin
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 269 (02) : 1484 - 1520
  • [24] Global Existence and Boundedness of Solutions to a Chemotaxis-Consumption Model with Singular Sensitivity
    Lankeit, Johannes
    Viglialoro, Giuseppe
    ACTA APPLICANDAE MATHEMATICAE, 2020, 167 (01) : 75 - 97
  • [25] Global Existence and Boundedness of Solutions to a Chemotaxis-Consumption Model with Singular Sensitivity
    Johannes Lankeit
    Giuseppe Viglialoro
    Acta Applicandae Mathematicae, 2020, 167 : 75 - 97
  • [26] Global boundedness of solutions to a two-species chemotaxis system
    Qingshan Zhang
    Yuxiang Li
    Zeitschrift für angewandte Mathematik und Physik, 2015, 66 : 83 - 93
  • [27] Traveling Pulses for a Two-Species Chemotaxis Model
    Emako, Casimir
    Gayrard, Charlene
    Buguin, Axel
    de Almeida, Luis Neves
    Vauchelet, Nicolas
    PLOS COMPUTATIONAL BIOLOGY, 2016, 12 (04)
  • [28] GLOBAL EXISTENCE AND STABILITY IN A TWO-SPECIES CHEMOTAXIS SYSTEM
    Qiu, Huanhuan
    Guo, Shangjiang
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2019, 24 (04): : 1569 - 1587
  • [29] Global dynamics for a two-species chemotaxis system with loop
    Zhou, Xing
    Ren, Guoqiang
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2024, 75 (03):
  • [30] Global boundedness of solutions to a two-species chemotaxis system
    Zhang, Qingshan
    Li, Yuxiang
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2015, 66 (01): : 83 - 93