Guided normal filter for 3D point clouds

被引:1
|
作者
Feng, Zhi-Ao [1 ]
Han, Xian-Feng [1 ]
机构
[1] Southwest Univ, Coll Comp & Informat Sci, Chongqing, Peoples R China
基金
中国国家自然科学基金;
关键词
3D point cloud; Filter; Local linear model; Feature preserving;
D O I
10.1007/s11042-022-13751-w
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Point clouds have been attracting more and more attention due to the advancement of 3D sensors. However, the raw point clouds acquired suffer inevitably from noise, which challenges their applications in 3D computer vision. In order to address this problem, we propose a novel feature-preserving filtering framework, termed Guided Normal Point Cloud Filter. First, we perform initial normal estimation using improved Principal Component Analysis algorithm. Then, a well-designed point normal filter based on locally linear model is proposed, which uses the estimated normal field as guidance. Finally, according to the adjusted normal field, we treat the point positions update problem as a least-squares issue solved by stochastic gradient decent optimizer. Quantitative and qualitative experimental results on several point cloud models show the effectiveness of our proposed algorithm, which can provide a much better trade-off between filtering performance and computational efficiency.
引用
收藏
页码:13797 / 13810
页数:14
相关论文
共 50 条
  • [21] Outliers in 3D Point Clouds Applied to Efficient Image-Guided Localization
    Sirazitdinova, Ekaterina
    Jonas, Stephan M.
    Kochanov, Deyvid
    Lensen, Jan
    Houben, Richard
    Slijp, Hans
    Deserno, Thomas M.
    BILDVERARBEITUNG FUR DIE MEDIZIN 2015: ALGORITHMEN - SYSTEME - ANWENDUNGEN, 2015, : 197 - 202
  • [22] 3D shape from unorganized 3D point clouds
    Kamberov, G
    Kamberova, G
    Jain, A
    ADVANCES IN VISUAL COMPUTING, PROCEEDINGS, 2005, 3804 : 621 - +
  • [23] Face Recognition on 3D Point Clouds
    Zhang, Ziyu
    Da, Feipeng
    Wang, Chenxing
    Yu, Jian
    Yu, Yi
    SEVENTH INTERNATIONAL CONFERENCE ON OPTICAL AND PHOTONIC ENGINEERING (ICOPEN 2019), 2019, 11205
  • [24] On the Segmentation of 3D LIDAR Point Clouds
    Douillard, B.
    Underwood, J.
    Kuntz, N.
    Vlaskine, V.
    Quadros, A.
    Morton, P.
    Frenkel, A.
    2011 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2011,
  • [25] Meshfree thinning of 3D point clouds
    Dyn, Nira
    Iske, Armin
    Wendland, Holger
    FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2008, 8 (04) : 409 - 425
  • [26] Generating 3D Adversarial Point Clouds
    Xiang, Chong
    Qi, Charles R.
    Li, Bo
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 9128 - 9136
  • [27] 3D Point Clouds Parameterization Alogrithm
    Wang, Lihui
    Yuan, Baozong
    Miao, Zhenjiang
    ICSP: 2008 9TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING, VOLS 1-5, PROCEEDINGS, 2008, : 1411 - 1414
  • [28] Towards Optimal 3D Point Clouds
    Nuechter, Andreas
    Elseberg, Jan
    Borrmann, Dorit
    GIM INTERNATIONAL-THE WORLDWIDE MAGAZINE FOR GEOMATICS, 2013, 27 (09): : 29 - 33
  • [29] Meshfree Thinning of 3D Point Clouds
    Nira Dyn
    Armin Iske
    Holger Wendland
    Foundations of Computational Mathematics, 2008, 8 : 409 - 425
  • [30] Structure Perception in 3D Point Clouds
    Gruchalla, Kenny
    Raghupathi, Sunand
    Brunhart-Lupo, Nicholas
    ACM SYMPOSIUM ON APPLIED PERCEPTION (SAP 2021), 2021,