Eigenvalue type problem in s(., .)-fractional Musielak-Sobolev spaces

被引:0
|
作者
Srati, Mohammed [1 ]
机构
[1] Univ Mohammed First, High Sch Educ & Format ESEF, Oujda, Morocco
关键词
s(; )-Fractional Musielak-Sobolev spaces; Eigenvalue problems; Ekeland's ariational principle; REGULARITY CRITERION;
D O I
10.1007/s41808-024-00269-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we introduce the s(., .)-fractional Musielak-Sobolev spaces W-s(x,W-y) L-Phi x,L-y (Omega). Then, we show that there exists lambda(*) > 0 such that any lambda is an element of (0, lambda(*)) is an eigenvalue for the following problem, by means of Ekeland's variational principle (P-a){(-Delta)(s(x,.))(a(x,.)) u = lambda vertical bar u vertical bar (q(x)-2) u in Omega, u = 0 in R-N\Omega, where Omega is a bounded open subset of R-N with C-0,C-1-regularity and bounded boundary.
引用
收藏
页码:387 / 413
页数:27
相关论文
共 50 条
  • [21] Existence results of non-local integro-differential problem with singularity under a new fractional Musielak-Sobolev space*
    Cheng, Yu
    Bai, Zhanbing
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2025, 58 (04)
  • [22] The eigenvalue problem for Kirchhoff-type operators in Musielak-Orlicz spaces
    Mendez, Osvaldo
    ARABIAN JOURNAL OF MATHEMATICS, 2023, 12 (03) : 613 - 631
  • [23] On a nonlinear general eigenvalue problem in Musielak-Orlicz spaces
    Kassimi, Soufiane
    Sabiki, Hajar
    Moussa, Hicham
    GEORGIAN MATHEMATICAL JOURNAL, 2024,
  • [24] Existence of solutions for a nonlocal type problem in fractional Orlicz Sobolev spaces
    Azroul, Elhoussine
    Benkirane, Abdelmoujib
    Srati, Mohammed
    ADVANCES IN OPERATOR THEORY, 2020, 5 (04) : 1350 - 1375
  • [25] Existence of solutions for a nonlocal type problem in fractional Orlicz Sobolev spaces
    Elhoussine Azroul
    Abdelmoujib Benkirane
    Mohammed Srati
    Advances in Operator Theory, 2020, 5 : 1350 - 1375
  • [26] Sobolev inequalities for Musielak–Orlicz spaces
    Yoshihiro Mizuta
    Takao Ohno
    Tetsu Shimomura
    manuscripta mathematica, 2018, 155 : 209 - 227
  • [27] ON A NONLINEAR EIGENVALUE PROBLEM IN SOBOLEV SPACES WITH VARIABLE EXPONENT
    Dinu, T-L
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2005, 2 : 208 - 217
  • [28] On a nonlinear eigenvalue problem in Orlicz-Sobolev spaces
    Gossez, JP
    Manásevich, R
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2002, 132 : 891 - 909
  • [29] Hardy's inequality in Musielak-Orlicz-Sobolev spaces
    Maeda, Fumi-Yuki
    Mizuta, Yoshihiro
    Ohno, Takao
    Shimomura, Tetsu
    HIROSHIMA MATHEMATICAL JOURNAL, 2014, 44 (02) : 139 - 155
  • [30] Existence of capacity solution for a nonlocal thermistor problem in Musielak–Orlicz–Sobolev spaces
    Ibrahim Dahi
    Moulay Rchid Sidi Ammi
    Annals of Functional Analysis, 2023, 14