Bi-level iterative regularization for inverse problems in nonlinear PDEs

被引:0
|
作者
Nguyen, Tram Thi Ngoc [1 ]
机构
[1] MPI Solar Syst Res Fellow Grp Inverse Problems, Gottingen, Germany
关键词
parameter identification; bi-level approach; Landweber method; tangential cone condition; stability estimate; Landau-Lifshitz-Gilbert equation; magnetic particle imaging; PARAMETER-ESTIMATION; LANDWEBER ITERATION; CONVERGENCE; IDENTIFICATION; APPROXIMATION; EQUATION;
D O I
10.1088/1361-6420/ad2905
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the ill-posed inverse problem of recovering unknown spatially dependent parameters in nonlinear evolution partial differential equations (PDEs). We propose a bi-level Landweber scheme, where the upper-level parameter reconstruction embeds a lower-level state approximation. This can be seen as combining the classical reduced setting and the newer all-at-once setting, allowing us to, respectively, utilize well-posedness of the parameter-to-state map, and to bypass having to solve nonlinear PDEs exactly. Using this, we derive stopping rules for lower- and upper-level iterations and convergence of the bi-level method. We discuss application to parameter identification for the Landau-Lifshitz-Gilbert equation in magnetic particle imaging.
引用
收藏
页数:36
相关论文
共 50 条
  • [31] DOMINO: Data-driven Optimization of bi-level Mixed-Integer NOnlinear Problems
    Burcu Beykal
    Styliani Avraamidou
    Ioannis P. E. Pistikopoulos
    Melis Onel
    Efstratios N. Pistikopoulos
    Journal of Global Optimization, 2020, 78 : 1 - 36
  • [32] DOMINO: Data-driven Optimization of bi-level Mixed-Integer NOnlinear Problems
    Beykal, Burcu
    Avraamidou, Styliani
    Pistikopoulos, Ioannis P. E.
    Onel, Melis
    Pistikopoulos, Efstratios N.
    JOURNAL OF GLOBAL OPTIMIZATION, 2020, 78 (01) : 1 - 36
  • [33] On the iterative regularization of inverse heat conduction problems by conjugate gradient method
    Prud'homme, M
    Nguyen, TH
    INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 1998, 25 (07) : 999 - 1008
  • [34] LABO: Towards Learning Optimal Label Regularization via Bi-level Optimization
    Lu, Peng
    Rashid, Ahmad
    Kobyzev, Ivan
    Rezagholizadeh, Mehdi
    Langlais, Philippe
    FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, ACL 2023, 2023, : 5759 - 5774
  • [35] An iterative regularization method for nonlinear problems based on Bregman projections
    Maass, Peter
    Strehlow, Robin
    INVERSE PROBLEMS, 2016, 32 (11)
  • [36] The analysis study on nonlinear iterative methods for inverse problems
    Du, Lingling
    Li, Jing
    Wang, Jinping
    APPLICABLE ANALYSIS, 2017, 96 (06) : 925 - 935
  • [37] Iterative total variation schemes for nonlinear inverse problems
    Bachmayr, Markus
    Burger, Martin
    INVERSE PROBLEMS, 2009, 25 (10)
  • [38] A nonlinear bi-level programming approach for product portfolio management
    Ma, Shuang
    SPRINGERPLUS, 2016, 5
  • [39] Nonlinear optimization in bi-level selective maintenance allocation problem
    Khan, Mohammad Faisal
    Modibbo, Umar Muhammad
    Ahmad, Naeem
    Ali, Irfan
    JOURNAL OF KING SAUD UNIVERSITY SCIENCE, 2022, 34 (04)
  • [40] VIKOR approach for bi-level multi-criteria nonlinear fractional programming problems: new insights
    Garg, Harish
    Thanh, Dang Ngoc Hoang
    Rizk-Allah, Rizk M.
    KYBERNETES, 2023, 52 (10) : 4375 - 4400