Bi-level iterative regularization for inverse problems in nonlinear PDEs

被引:0
|
作者
Nguyen, Tram Thi Ngoc [1 ]
机构
[1] MPI Solar Syst Res Fellow Grp Inverse Problems, Gottingen, Germany
关键词
parameter identification; bi-level approach; Landweber method; tangential cone condition; stability estimate; Landau-Lifshitz-Gilbert equation; magnetic particle imaging; PARAMETER-ESTIMATION; LANDWEBER ITERATION; CONVERGENCE; IDENTIFICATION; APPROXIMATION; EQUATION;
D O I
10.1088/1361-6420/ad2905
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the ill-posed inverse problem of recovering unknown spatially dependent parameters in nonlinear evolution partial differential equations (PDEs). We propose a bi-level Landweber scheme, where the upper-level parameter reconstruction embeds a lower-level state approximation. This can be seen as combining the classical reduced setting and the newer all-at-once setting, allowing us to, respectively, utilize well-posedness of the parameter-to-state map, and to bypass having to solve nonlinear PDEs exactly. Using this, we derive stopping rules for lower- and upper-level iterations and convergence of the bi-level method. We discuss application to parameter identification for the Landau-Lifshitz-Gilbert equation in magnetic particle imaging.
引用
收藏
页数:36
相关论文
共 50 条