Person Activity Classification from an Aerial Sensor Based on a Multi-level Deep Features

被引:0
|
作者
Bouhlel, Fatma [1 ]
Mliki, Hazar [2 ,3 ]
Hammami, Mohamed [1 ]
机构
[1] Univ Sfax, Fac Sci Sfax, MIRACL FS, Rd Sokra Km 3, Sfax 3018, Tunisia
[2] Univ Sfax, MIRACL Lab, Sfax, Tunisia
[3] Univ Carthage, Natl Inst Appl Sci & Technol, Tunis, Tunisia
关键词
Person activity classification; multi-level deep features; aerial sensor; CNN;
D O I
10.1007/978-3-031-45382-3_6
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The intelligent surveillance system is considered as an important research field since it provides continuous personal security solution. In fact, this surveillance system support security guards by warning them in suspicious situations such as recognize the abnormal person activity. In this context, we introduced a new method for person activity classification that includes offline and inference phases. Based on convolutional neural networks, the offline phase aims to generate the person activity model. Whereas, the inference phase relies on the generate model to classify the person's activity. The main contribution of the proposed method is to introduce a multi-level deep features to handle inter- and intra-class variation. Through a comparative study, performed on the UCF-ARG dataset, we assessed the performance of our method compared to the state-of-the-art works.
引用
收藏
页码:66 / 75
页数:10
相关论文
共 50 条
  • [31] A Multi-level Deep Convolutional Neural Network for Image Emotion Classification
    Wang W.
    Li L.
    Huang J.
    Luo J.
    Xu X.
    Huanan Ligong Daxue Xuebao/Journal of South China University of Technology (Natural Science), 2019, 47 (06): : 39 - 50
  • [32] Multi-level fusion with deep neural networks for multimodal sentiment classification
    Zhang Guangwei
    Zhao Bing
    Li Ruifan
    TheJournalofChinaUniversitiesofPostsandTelecommunications, 2022, 29 (03) : 25 - 33
  • [33] Identification of Plant diseases Using Multi-Level Classification deep Model
    Tembhurne J.
    Saxena T.
    Diwan T.
    International Journal of Ambient Computing and Intelligence, 2022, 13 (01)
  • [34] MFFusion: A Multi-level Features Fusion Model for Malicious Traffic Detection based on Deep Learning
    Lin, Kunda
    Xu, Xiaolong
    Xiao, Fu
    COMPUTER NETWORKS, 2022, 202
  • [35] Multi-Level severity classification for diabetic retinopathy based on hybrid optimization enabled deep learning
    Beevi, S. Zulaikha
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2023, 84
  • [36] Deep learning based microscopic cell images classification framework using multi-level ensemble
    Maurya, Ritesh
    Pathak, Vinay Kumar
    Dutta, Malay Kishore
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2021, 211
  • [37] AUTISM CLASSIFICATION USING SMRI : A RECURSIVE FEATURES SELECTION BASED ON SAMPLING FROM MULTI-LEVEL HIGH DIMENSIONAL SPACES
    Ali, Mohamed T.
    Elnakieb, Yaser A.
    Shalaby, Ahmed
    Mahmoud, Ali
    Switala, Andy
    Ghazal, Mohammed
    Khelifi, Adel
    Fraiwan, Luay
    Barnes, Georgy
    El-Baz, Ayman
    2021 IEEE 18TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2021, : 267 - 270
  • [38] Learning multi-level and multi-scale deep representations for privacy image classification
    Han, Yahui
    Huang, Yonggang
    Pan, Lei
    Zheng, Yunbo
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (02) : 2259 - 2274
  • [39] Learning multi-level and multi-scale deep representations for privacy image classification
    Yahui Han
    Yonggang Huang
    Lei Pan
    Yunbo Zheng
    Multimedia Tools and Applications, 2022, 81 : 2259 - 2274
  • [40] Efficient person authentication based on multi-level fusion of ear scores
    Lakshmanan, Latha
    IET BIOMETRICS, 2013, 2 (03) : 97 - 106