Classification of BCI Multiclass Motor Imagery Task Based on Artificial Neural Network

被引:3
|
作者
Echtioui, Amira [1 ]
Zouch, Wassim [2 ]
Ghorbel, Mohamed [1 ]
Mhiri, Chokri [3 ,4 ]
Hamam, Habib [5 ]
机构
[1] Sfax Univ, ATMS Lab, Adv Technol Med & Signals, ENIS, Sfax, Tunisia
[2] King Abdulaziz Univ KAU, Jeddah, Saudi Arabia
[3] Habib Bourguiba Univ Hosp, Dept Neurol, Sfax, Tunisia
[4] Sfax Univ, Fac Med, Neurosci Lab LR 12 SP 19, Sfax, Tunisia
[5] Moncton Univ, Fac Engn, Moncton, NB, Canada
关键词
motor imagery; brain-computer interfaces; electroencephalography; common spatial patterns; wavelet packet decomposition; artificial neural network; SINGLE-TRIAL EEG; FEATURE-EXTRACTION; RECOGNITION; ALGORITHM; MOVEMENT; SIGNALS; PATTERN; CSP;
D O I
10.1177/15500594221148285
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Motor imagery (MI) signals recorded by electroencephalography provide the most practical basis for conceiving brain-computer interfaces (BCI). These interfaces offer a high degree of freedom. This helps people with motor disabilities communicate with the device by tackling a sequence of motor imagery tasks. However, the extracting user-specific features and increasing the accuracy of the classifier remain as difficult tasks in MI-based BCI. In this work, we propose a new method using artificial neural network (ANN) enhancing the performance of the motor imagery classification. Feature extraction techniques, like time domain parameters, band power features, signal power features, and wavelet packet decomposition (WPD), are studied and compared. Four classification algorithms are implemented which are Quadratic Discriminant Analysis, k-Nearest Neighbors, Linear Discriminant Analysis, and proposed ANN architecture. We added Batch Normalization layers to the proposed ANN architecture to improve the learning time and accuracy of the neural network. These layers also alleviate the effect of weight initialization and the addition of a regularization effect on the network. Our proposed method using ANN architecture achieves 0.5545 of kappa and 58.42% of accuracy on the BCI Competition IV-2a dataset. Our results show that the modified ANN method, with frequency and spatial features extracted by WPD and Common Spatial Pattern, respectively, offers a better classification compared to other current methods.
引用
收藏
页码:455 / 464
页数:10
相关论文
共 50 条
  • [31] A hybrid SVM/HMM classification method for motor imagery based BCI
    School of Electrical Engineering, Chongqing University, Chongqing, China
    J. Comput. Inf. Syst., 4 (1259-1267):
  • [32] Classification of EEG-based motor imagery BCI by using ECOC
    Mobarezpour, Jahangir
    Khosrowabadi, Reza
    Ghaderi, Reza
    Navi, Keivan
    INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2019, 10 (02): : 23 - 33
  • [33] Neural Network-based Three-Class Motor Imagery Classification Using Time-Domain Features for BCI Applications
    Hamedi, Mahyar
    Salleh, Sh-Hussain
    Noor, Alias Mohd
    Mohammad-Rezazadeh, Iman
    2014 IEEE REGION 10 SYMPOSIUM, 2014, : 204 - 207
  • [34] TCACNet: Temporal and channel attention convolutional network for motor imagery classification of EEG-based BCI
    Liu, Xiaolin
    Shi, Rongye
    Hui, Qianxin
    Xu, Susu
    Wang, Shuai
    Na, Rui
    Sun, Ying
    Ding, Wenbo
    Zheng, Dezhi
    Chen, Xinlei
    INFORMATION PROCESSING & MANAGEMENT, 2022, 59 (05)
  • [35] Motor Imagery Classification Based on Plain Convolutional Neural Network and Linear Interpolation
    Li M.
    Wei L.
    Journal of Shanghai Jiaotong University (Science), 2024, 29 (06) : 958 - 966
  • [36] FILTER BANK EXTENSION FOR NEURAL NETWORK-BASED MOTOR IMAGERY CLASSIFICATION
    Merinov, Pavel
    Belyaev, Mikhail
    Krivov, Egor
    2016 IEEE 26TH INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP), 2016,
  • [37] Data Augmentation for Motor Imagery Signal Classification Based on a Hybrid Neural Network
    Zhang, Kai
    Xu, Guanghua
    Han, Zezhen
    Ma, Kaiquan
    Zheng, Xiaowei
    Chen, Longting
    Duan, Nan
    Zhang, Sicong
    SENSORS, 2020, 20 (16) : 1 - 20
  • [38] EEG Signal Classification for BCI based on Neural Network
    Chenane, Kathia
    Touati, Youcef
    PROCEEDINGS 2018 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM), 2018, : 2573 - 2576
  • [39] DeepMI: Deep Learning for Multiclass Motor Imagery Classification
    Abbas, Waseem
    Khan, Nadeem Ahmad
    2018 40TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2018, : 219 - 222
  • [40] Motor Imagery BCI Classification Using Synchrosqueezing Transform
    Yousif, Mosab A. A.
    Ozturk, Mahmut
    2023 31ST SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE, SIU, 2023,