Nehari manifold for singular fractional p(x,.)-Laplacian problem

被引:7
|
作者
Chammem, R. [1 ]
Ghanmi, A. [1 ]
Sahbani, A. [1 ]
机构
[1] Univ Tunis el Manart, Fac Sci Tunis, Dept Math, Tunis, Tunisia
关键词
Fractional p(x)-Laplacian; singular equations; variational methods; Nehari method; generalized Sobolev spaces; FUNCTIONALS; EXISTENCE; EQUATION; SPACES;
D O I
10.1080/17476933.2022.2069757
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider a class of fractional Laplacian problems of the form: {(-Delta)(p(x,.))(s) u+mu vertical bar u vertical bar(q(x)-2)u=lambda g(x)u(-gamma(x) )+ f(x, u) in Omega, u = 0, on partial derivative Omega, where Omega subset of R-N, (N >= 2), is a bounded domain and (-Delta)(p)(s)((x,.)()) is the fractional p(x,.)-Laplacian operator. We assume that lambda and mu are positive parameters and gamma : (Omega) over bar -> (0, 1) is a continuous function. By opting for the Nehari manifold method combined with the theory of generalized Lebesgue Sobolev spaces, we will prove the existence of solutions to the above problem.
引用
收藏
页码:1603 / 1625
页数:23
相关论文
共 50 条