Nehari manifold for singular fractional p(x,.)-Laplacian problem

被引:7
|
作者
Chammem, R. [1 ]
Ghanmi, A. [1 ]
Sahbani, A. [1 ]
机构
[1] Univ Tunis el Manart, Fac Sci Tunis, Dept Math, Tunis, Tunisia
关键词
Fractional p(x)-Laplacian; singular equations; variational methods; Nehari method; generalized Sobolev spaces; FUNCTIONALS; EXISTENCE; EQUATION; SPACES;
D O I
10.1080/17476933.2022.2069757
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider a class of fractional Laplacian problems of the form: {(-Delta)(p(x,.))(s) u+mu vertical bar u vertical bar(q(x)-2)u=lambda g(x)u(-gamma(x) )+ f(x, u) in Omega, u = 0, on partial derivative Omega, where Omega subset of R-N, (N >= 2), is a bounded domain and (-Delta)(p)(s)((x,.)()) is the fractional p(x,.)-Laplacian operator. We assume that lambda and mu are positive parameters and gamma : (Omega) over bar -> (0, 1) is a continuous function. By opting for the Nehari manifold method combined with the theory of generalized Lebesgue Sobolev spaces, we will prove the existence of solutions to the above problem.
引用
收藏
页码:1603 / 1625
页数:23
相关论文
共 50 条
  • [1] Existence Results for Fractional p(x, .)-Laplacian Problem Via the Nehari Manifold Approach
    E. Azroul
    A. Benkirane
    A. Boumazourh
    M. Shimi
    [J]. Applied Mathematics & Optimization, 2021, 84 : 1527 - 1547
  • [2] Existence Results for Fractional p(x, .)-Laplacian Problem Via the Nehari Manifold Approach
    Azroul, E.
    Benkirane, A.
    Boumazourh, A.
    Shimi, M.
    [J]. APPLIED MATHEMATICS AND OPTIMIZATION, 2021, 84 (02): : 1527 - 1547
  • [3] Correction To: Existence Results for Fractional p(x, .)-Laplacian Problem Via the Nehari Manifold Approach
    E. Azroul
    A. Benkirane
    A. Boumazourh
    M. Shimi
    [J]. Applied Mathematics & Optimization, 2021, 84 : 2699 - 2699
  • [4] The Nehari manifold for a ψ-Hilfer fractional p-Laplacian
    Sousa, J. Vanterler da C.
    Zuo, Jiabin
    O'Regan, Donal
    [J]. APPLICABLE ANALYSIS, 2022, 101 (14) : 5076 - 5106
  • [5] A singular System Involving the Fractional p-Laplacian Operator via the Nehari Manifold Approach
    Saoudi, Kamel
    [J]. COMPLEX ANALYSIS AND OPERATOR THEORY, 2019, 13 (03) : 801 - 818
  • [6] A singular System Involving the Fractional p-Laplacian Operator via the Nehari Manifold Approach
    Kamel Saoudi
    [J]. Complex Analysis and Operator Theory, 2019, 13 : 801 - 818
  • [7] The Nehari Manifold Approach for a p(x)-Laplacian Problem with Nonlinear Boundary Conditions
    Rasouli, S. H.
    Fallah, K.
    [J]. UKRAINIAN MATHEMATICAL JOURNAL, 2017, 69 (01) : 111 - 125
  • [8] The Nehari Manifold Approach for a p(x)-Laplacian Problem with Nonlinear Boundary Conditions
    S. H. Rasouli
    K. Fallah
    [J]. Ukrainian Mathematical Journal, 2017, 69 : 111 - 125
  • [9] The Nehari manifold approach for p(x)-Laplacian problem with Neumann boundary condition
    Taghavi, A.
    Afrouzi, G. A.
    Ghorbani, H.
    [J]. ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2013, (39) : 1 - 14
  • [10] THE NEHARI MANIFOLD APPROACH FOR DIRICHLET PROBLEM INVOLVING THE p(x)-LAPLACIAN EQUATION
    Mashiyev, Rabil A.
    Ogras, Sezai
    Yucedag, Zehra
    Avci, Mustafa
    [J]. JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2010, 47 (04) : 845 - 860