A novel approach with the dynamic decision mechanism (DDM) in multi-focus image fusion

被引:2
|
作者
Aymaz, Samet [1 ]
Kose, Cemal [1 ]
Aymaz, Seyma [1 ]
机构
[1] Karadeniz Tech Univ, Dept Comp Engn, Trabzon, Turkey
关键词
Multi-focus; Image fusion; Deep learning; Focus metrics; CNN; ALGORITHM; TRANSFORM; FRAMEWORK; NETWORKS; WAVELET;
D O I
10.1007/s11042-022-13323-y
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Multi-focus image fusion merges multiple source images of the same scene with different focus values to obtain a single image that is more informative. A novel approach is proposed to create this single image in this paper. The method's primary stages include creating initial decision maps, applying morphological operations, and obtaining the fused image with the created fusion rule. Initial decision maps consist of label values represented as focused or non-focused. While determining these values, the first decision is made by feeding the image patches obtained from each source image to the modified CNN architecture. If the modified CNN architecture is unstable in determining label values, a new improvement mechanism designed based on focus measurements is applied for unstable regions where each image patch is labelled as non-focused. Then, the initial decision maps obtained for each source image are improved by morphological operations. Finally, the dynamic decision mechanism (DDM) fusion rule, designed considering the label values in the decision maps, is applied to minimize the disinformation resulting from classification errors in the fused image. At the end of all these steps, the final fused image is obtained. Also, in the article, a rich dataset containing two or more than two source images for each scene is created based on the COCO dataset. As a result, the method's success is measured with the help of objective and subjective metrics. When the visual and quantitative results are examined, it is proven that the proposed method successfully creates a perfect fused image.
引用
收藏
页码:1821 / 1871
页数:51
相关论文
共 50 条
  • [41] Multi-focus image fusion based on NLEMD
    Jing, Zhao
    Bu, Xu
    Fei, Liu
    2008 IEEE INTERNATIONAL CONFERENCE ON AUTOMATION AND LOGISTICS, VOLS 1-6, 2008, : 2266 - 2270
  • [42] A lightweight scheme for multi-focus image fusion
    Xin Jin
    Jingyu Hou
    Rencan Nie
    Shaowen Yao
    Dongming Zhou
    Qian Jiang
    Kangjian He
    Multimedia Tools and Applications, 2018, 77 : 23501 - 23527
  • [43] Survey on Multi-Focus Image Fusion Algorithms
    Garg, Rishu
    Gupta, Preeti
    Kaur, Harvinder
    2014 RECENT ADVANCES IN ENGINEERING AND COMPUTATIONAL SCIENCES (RAECS), 2014,
  • [44] Multi-focus image fusion using PCNN
    Wang, Zhaobin
    Ma, Yide
    Gu, Jason
    PATTERN RECOGNITION, 2010, 43 (06) : 2003 - 2016
  • [45] A Novel Multi-focus Image Fusion Method Using NSCT and PCNN
    Jiao, Zhuqing
    Shao, Jintao
    Xu, Baoguo
    2010 INTERNATIONAL COLLOQUIUM ON COMPUTING, COMMUNICATION, CONTROL, AND MANAGEMENT (CCCM2010), VOL I, 2010, : 109 - 112
  • [46] Novel multi-focus image fusion based on PCNN and random walks
    Wang, Zhaobin
    Wang, Shuai
    Guo, Lijie
    NEURAL COMPUTING & APPLICATIONS, 2018, 29 (11): : 1101 - 1114
  • [47] Multi-focus image fusion techniques: a survey
    Shiveta Bhat
    Deepika Koundal
    Artificial Intelligence Review, 2021, 54 : 5735 - 5787
  • [48] Multi-Focus Image Fusion of Digital Images
    Malviya, Anjali
    Bhirud, S. G.
    2009 INTERNATIONAL CONFERENCE ON ADVANCES IN RECENT TECHNOLOGIES IN COMMUNICATION AND COMPUTING (ARTCOM 2009), 2009, : 887 - +
  • [49] A CRYSTALVIEW ON MULTI-FOCUS IMAGE FUSION METHODS
    Prasad, K. H. K.
    Babu, S. B. G. Tilak
    Krishna, R. V. V.
    2021 IEEE INTERNATIONAL CONFERENCE ON COMPUTING, COMMUNICATION, AND INTELLIGENT SYSTEMS (ICCCIS), 2021, : 669 - 674
  • [50] Ensemble of CNN for multi-focus image fusion
    Amin-Naji, Mostafa
    Aghagolzadeh, Ali
    Ezoji, Mehdi
    INFORMATION FUSION, 2019, 51 : 201 - 214