A machine learning technique for Android malicious attacks detection based on API calls

被引:1
|
作者
AL-Akhrasa, Mousa [1 ]
Alghamdib, Saud [2 ]
Omarc, Hani [3 ]
Alshareefb, Hazzaa [2 ]
机构
[1] Univ Jordan, King Abdullah II Sch Informat Technol, Amman 11942, Jordan
[2] Saudi Elect Univ, Coll Comp & Informat, Riyadh 11673, Saudi Arabia
[3] Zarqa Univ, Fac Informat Technol, Zarqa 13110, Jordan
关键词
Attack Detection; API Calls; Machine Learning; Malware; Android;
D O I
10.5267/dsl.2023.12.004
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Android malware is widespread and it is considered as one of the most threatening attacks recently. The threat is targeting to damage access data or information or leaking them; in general, malicious software consists of viruses, worms, and other malware. Current malware attempts to prevent being detected by any software or anti-virus. This paper describes recent Android malware detection static and interactive approaches as well as several open-source malware datasets. The paper also examines the most current state-of-the-art Android malware identification techniques including identifying by comparative evaluation the gaps between these techniques. As a result, an API-based dynamic malware detection framework is proposed for Android to provide a dynamic paradigm for malware detection. The proposed framework was closely inspected and checked for reliability where meaningful API packages and methods were discovered. (c) 2024 by the authors; licensee Growing Science, Canada.
引用
收藏
页码:29 / 44
页数:16
相关论文
共 50 条
  • [41] Malicious Domain Name Detection Based on Extreme Machine Learning
    Shi, Yong
    Chen, Gong
    Li, Juntao
    NEURAL PROCESSING LETTERS, 2018, 48 (03) : 1347 - 1357
  • [42] Comparison of Machine Learning Methods for Android Malicious Software Classification based on System Call
    Anshori, Mochammad
    Mar'i, Farhanna
    Bachtiar, Fitra A.
    PROCEEDINGS OF 2019 4TH INTERNATIONAL CONFERENCE ON SUSTAINABLE INFORMATION ENGINEERING AND TECHNOLOGY (SIET 2019), 2019, : 343 - 348
  • [43] Malicious Domain Name Detection Based on Extreme Machine Learning
    Yong Shi
    Gong Chen
    Juntao Li
    Neural Processing Letters, 2018, 48 : 1347 - 1357
  • [44] Android Malware Detection Using Hybrid Analysis and Machine Learning Technique
    Yang, Fan
    Zhuang, Yi
    Wang, Jun
    CLOUD COMPUTING AND SECURITY, PT II, 2017, 10603 : 565 - 575
  • [45] Android Malware Detection Based on API Pairing
    Guan J.
    Liu H.
    Mao B.
    Jiang X.
    Xibei Gongye Daxue Xuebao/Journal of Northwestern Polytechnical University, 2020, 38 (05): : 965 - 970
  • [46] API Sequences based Malware Detection for Android
    Zhu, Jiawei
    Wu, Zhengang
    Guan, Zhi
    Chen, Zhong
    IEEE 12TH INT CONF UBIQUITOUS INTELLIGENCE & COMP/IEEE 12TH INT CONF ADV & TRUSTED COMP/IEEE 15TH INT CONF SCALABLE COMP & COMMUN/IEEE INT CONF CLOUD & BIG DATA COMP/IEEE INT CONF INTERNET PEOPLE AND ASSOCIATED SYMPOSIA/WORKSHOPS, 2015, : 673 - 676
  • [47] Defending Malicious Script Attacks Using Machine Learning Classifiers
    Khan, Nayeem
    Abdullah, Johari
    Khan, Adnan Shahid
    WIRELESS COMMUNICATIONS & MOBILE COMPUTING, 2017,
  • [48] A Machine Learning Approach To Prevent Malicious Calls Over Telephony Networks
    Li, Huichen
    Xu, Xiaojun
    Liu, Chang
    Ren, Teng
    Wu, Kun
    Cao, Xuezhi
    Zhang, Weinan
    Yu, Yong
    Song, Dawn
    2018 IEEE SYMPOSIUM ON SECURITY AND PRIVACY (SP), 2018, : 53 - 69
  • [49] Effectiveness of machine learning based android malware detectors against adversarial attacks
    Jyothish, A.
    Mathew, Ashik
    Vinod, P.
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2024, 27 (03): : 2549 - 2569
  • [50] Detection of Android Malware Using Machine Learning and Siamese Shot Learning Technique for Security
    Almarshad, Fahdah A.
    Zakariah, Mohammed
    Gashgari, Ghada Abdalaziz
    Aldakheel, Eman Abdullah
    Alzahrani, Abdullah I. A.
    IEEE ACCESS, 2023, 11 : 127697 - 127714