A machine learning technique for Android malicious attacks detection based on API calls

被引:1
|
作者
AL-Akhrasa, Mousa [1 ]
Alghamdib, Saud [2 ]
Omarc, Hani [3 ]
Alshareefb, Hazzaa [2 ]
机构
[1] Univ Jordan, King Abdullah II Sch Informat Technol, Amman 11942, Jordan
[2] Saudi Elect Univ, Coll Comp & Informat, Riyadh 11673, Saudi Arabia
[3] Zarqa Univ, Fac Informat Technol, Zarqa 13110, Jordan
关键词
Attack Detection; API Calls; Machine Learning; Malware; Android;
D O I
10.5267/dsl.2023.12.004
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Android malware is widespread and it is considered as one of the most threatening attacks recently. The threat is targeting to damage access data or information or leaking them; in general, malicious software consists of viruses, worms, and other malware. Current malware attempts to prevent being detected by any software or anti-virus. This paper describes recent Android malware detection static and interactive approaches as well as several open-source malware datasets. The paper also examines the most current state-of-the-art Android malware identification techniques including identifying by comparative evaluation the gaps between these techniques. As a result, an API-based dynamic malware detection framework is proposed for Android to provide a dynamic paradigm for malware detection. The proposed framework was closely inspected and checked for reliability where meaningful API packages and methods were discovered. (c) 2024 by the authors; licensee Growing Science, Canada.
引用
收藏
页码:29 / 44
页数:16
相关论文
共 50 条
  • [1] Android Malware Detection based on Useful API Calls and Machine Learning
    Jung, Jaemin
    Kim, Hyunjin
    Shin, Dongjin
    Lee, Myeonggeon
    Lee, Hyunjae
    Cho, Seong-je
    Suh, Kyoungwon
    [J]. 2018 IEEE FIRST INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND KNOWLEDGE ENGINEERING (AIKE), 2018, : 175 - 178
  • [2] Permission and API Calls Based Hybrid Machine Learning Approach for Detecting Malicious Software in Android System
    Prabhavathy, M.
    Maheswari, S. Uma
    Saveeth, R.
    Rubini, S. Saranya
    [J]. JOURNAL OF MULTIPLE-VALUED LOGIC AND SOFT COMPUTING, 2021, 37 (5-6) : 553 - 571
  • [3] Machine Learning for Android Malware Detection Using Permission and API Calls
    Peiravian, Naser
    Zhu, Xingquan
    [J]. 2013 IEEE 25TH INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI), 2013, : 300 - 305
  • [4] Machine Learning-Based Malicious Application Detection of Android
    Wei, Linfeng
    Luo, Weiqi
    Weng, Jian
    Zhong, Yanjun
    zhang, Xiaoqian
    Yan, Zheng
    [J]. IEEE ACCESS, 2017, 5 : 25591 - 25601
  • [5] Detection of malicious behavior in android apps through API calls and permission uses analysis
    Yang, Ming
    Wang, Shan
    Ling, Zhen
    Liu, Yaowen
    Ni, Zhenyu
    [J]. CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2017, 29 (19):
  • [6] Android Malware Detection Using API Calls: A Comparison of Feature Selection and Machine Learning Models
    Muzaffar, Ali
    Hassen, Hani Ragab
    Lones, Michael A.
    Zantout, Hind
    [J]. PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON APPLIED CYBER SECURITY (ACS) 2021, 2022, 378 : 3 - 12
  • [7] A machine learning based approach to detect malicious android apps using discriminant system calls
    Vinod, P.
    Zemmari, Akka
    Conti, Mauro
    [J]. FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2019, 94 : 333 - 350
  • [8] A MACHINE LEARNING APPROACH TO THE DETECTION AND ANALYSIS OF ANDROID MALICIOUS APPS
    Shibija, K.
    Raymond, Joseph, V
    [J]. 2018 INTERNATIONAL CONFERENCE ON COMPUTER COMMUNICATION AND INFORMATICS (ICCCI), 2018,
  • [9] Android Malware Detection Method Based on Permission Complement and API Calls
    Yang, Jiyun
    Tang, Jiang
    Yan, Ran
    Xiang, Tao
    [J]. CHINESE JOURNAL OF ELECTRONICS, 2022, 31 (04) : 773 - 785
  • [10] Android Malware Detection Method Based on Permission Complement and API Calls
    YANG Jiyun
    TANG Jiang
    YAN Ran
    XIANG Tao
    [J]. Chinese Journal of Electronics, 2022, (04) : 773 - 785