Powers of Fibonacci numbers which are products of repdigits

被引:0
|
作者
Lourenco, Abel medina [1 ]
机构
[1] Univ Sao Paulo, Inst Matemat & Estat, Rua Matao 1010, Butanta, SP, Brazil
来源
关键词
Exponential Diophantine equations; Fibonacci numbers;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article we solve the equation F-n(k)= (d(1) <middle dot> 10(m)-1/9) <middle dot> (d(2) <middle dot> 10(q)-1/9), with n, k, d(1), d(2), m, q &is an element of N, d(1), d(2) = 1, ..., 9, m, q >= 2, k >= 2, 9 9 showing that the only perfect power of a Fibonacci number which is a product of two repdigits is F-10(2) = 55 <middle dot> 55.In order to do this we use only elementary methods, like divisibility properties of Fibonacci numbers, periodicity, results on prime factorizations and an application of Nagell-Ljunggren equations.
引用
收藏
页码:205 / 215
页数:11
相关论文
共 50 条