A New Multisensor Partial Domain Adaptation Method for Machinery Fault Diagnosis Under Different Working Conditions

被引:1
|
作者
Zhu, Jun [1 ,2 ]
Wang, Yuanfan [1 ]
Xia, Min [3 ]
Williams, Darren [3 ]
de Silva, Clarence W. [4 ]
机构
[1] Northwestern Polytech Univ, Sch Civil Aviat, Xian 710071, Peoples R China
[2] Northwestern Polytech Univ, Yangtze River Delta Res Inst, Suzhou 215400, Peoples R China
[3] Univ Lancaster, Sch Engn, Lancaster LA1 4YW, England
[4] Univ British Columbia, Dept Mech Engn, Vancouver, BC V6T 1Z4, Canada
关键词
Feature extraction; Fault diagnosis; Training; Adversarial machine learning; Machinery; Optimization; Monitoring; Adversarial learning; fault diagnosis; multisenor fusion; partial domain adaptation (DA); rotating machinery; FRAMEWORK; NETWORK;
D O I
10.1109/TIM.2023.3318679
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Cross-domain fault diagnostic methods based on domain adaptation (DA) have been developed for single-sensor monitoring scenarios, in which the source and target domains fall into the same categories. However, in real-world situations, faults are usually mixed with each other, and the target health category is a subspace of the source health category, posing challenges to the current cross-domain fault diagnostic approaches. Additionally, with the increasing complexity of modern industrial systems, less attention has been paid to multisensor cross-domain diagnosis. To address this research gap, this article proposes a new method of multisensor partial DA fault diagnosis. First, the frequency information of multisensor measurements is obtained to fully utilize the fault information. Then, an improved partial DA method based on a weighted domain adversarial network is used to distinguish the label space of the data samples. Finally, a joint optimization objective is constructed under the framework of partial transfer fault diagnosis, where two terms, namely, conditional entropy and adaptive uncertainty suppression, are further added to regularize the optimization objective. Through the proposed method, the positive transfer between shared common classes is guaranteed, and additionally, the passive influence resulting from outlier classes is prevented. Experimental results show that the proposed approach surpasses other popular methods for partial transfer fault diagnosis.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] A Domain Adaptation with Semantic Clustering (DASC) method for fault diagnosis of rotating machinery
    Kim, Myungyon
    Ko, Jin Uk
    Lee, Jinwook
    Youn, Byeng D.
    Jung, Joon Ha
    Sun, Kyung Ho
    ISA TRANSACTIONS, 2022, 120 : 372 - 382
  • [32] Weighted domain adaptation networks for machinery fault diagnosis
    Wei, Dongdong
    Han, Te
    Chu, Fulei
    Zuo, Ming Jian
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2021, 158
  • [33] An Intelligent Machinery Fault Diagnosis Method Based on GAN and Transfer Learning under Variable Working Conditions
    He, Wangpeng
    Chen, Jing
    Zhou, Yue
    Liu, Xuan
    Chen, Binqiang
    Guo, Baolong
    SENSORS, 2022, 22 (23)
  • [34] Adversarial domain adaptation network with MixMatch for incipient fault diagnosis of PMSM under multiple working conditions
    Peng, Xia
    Peng, Tao
    Yang, Chao
    Ye, Chenglei
    Chen, Zhiwen
    Yang, Chunhua
    KNOWLEDGE-BASED SYSTEMS, 2024, 284
  • [35] Domain adaptation network base on contrastive learning for bearings fault diagnosis under variable working conditions
    An, Yiyao
    Zhang, Ke
    Chai, Yi
    Liu, Qie
    Huang, Xinghua
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 212
  • [36] Deep imbalanced domain adaptation for transfer learning fault diagnosis of bearings under multiple working conditions
    Ding, Yifei
    Jia, Minping
    Zhuang, Jichao
    Cao, Yudong
    Zhao, Xiaoli
    Lee, Chi-Guhn
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2023, 230
  • [37] Domain Adaptation-Based Transfer Learning for Gear Fault Diagnosis Under Varying Working Conditions
    Chen, Chao
    Shen, Fei
    Xu, Jiawen
    Yan, Ruqiang
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2021, 70
  • [38] Convolutional Domain Adaptation Network for Fault Diagnosis of Thermal System under Different Loading Conditions
    Wang, Xiaoxia
    Jin, Meng
    PROCEEDINGS OF THE 39TH CHINESE CONTROL CONFERENCE, 2020, : 4193 - 4197
  • [39] Prototype-guided bi-level adversarial domain adaptation network for intelligent fault diagnosis of rotating machinery under various working conditions
    Kuang, Jiachen
    Xu, Guanghua
    Zhang, Sicong
    Han, Chengcheng
    Wu, Qingqiang
    Wei, Fan
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2022, 33 (11)
  • [40] A novel transfer learning method for bearing fault diagnosis under different working conditions
    Zou, Yisheng
    Liu, Yongzhi
    Deng, Jialin
    Jiang, Yuliang
    Zhang, Weihua
    MEASUREMENT, 2021, 171