Wigner function for the quantum mechanics on a sphere

被引:1
|
作者
Kowalski, K. [1 ]
Lawniczak, K. [1 ]
机构
[1] Univ Lodz, Dept Theoret Phys, ul Pomorska 149-153, PL-90236 Lodz, Poland
关键词
Wigner function; Quantization on a sphereS2; Coherent states on a sphereS2; TRANSFORM;
D O I
10.1016/j.aop.2023.169428
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Wigner quasiprobability function for a particle on a sphere is introduced and its properties investigated. In opposition to alternative approaches this Wigner function depends on the points of the classical phase space, that is the cotangent bundle T*S2. & COPY; 2023 Elsevier Inc. All rights reserved.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Quantum mechanics in phase space: first order comparison between the Wigner and the Fermi function
    Benenti, G.
    Strini, G.
    EUROPEAN PHYSICAL JOURNAL D, 2010, 57 (01): : 117 - 121
  • [22] Quantum Dynamics of Charged Fermions in the Wigner Formulation of Quantum Mechanics
    Filinov, Vladimir
    Larkin, Alexander
    UNIVERSE, 2018, 4 (12):
  • [23] Quantum dynamics of charged particles in the Wigner formulation of quantum mechanics
    Filinov, V. S.
    Larkin, A. S.
    XXXIII INTERNATIONAL CONFERENCE ON EQUATIONS OF STATE FOR MATTER, 2019, 1147
  • [24] SUPERSYMMETRIC QUANTUM-MECHANICS ON THE SPHERE
    SPIEGELGLAS, M
    PHYSICS LETTERS B, 1986, 166 (02) : 160 - 164
  • [25] Quantum mechanics on the noncommutative plane and sphere
    Nair, VP
    Polychronakos, AP
    PHYSICS LETTERS B, 2001, 505 (1-4) : 267 - 274
  • [26] QUANTUM-MECHANICS ON A FUZZY SPHERE
    MADORE, J
    PHYSICS LETTERS B, 1991, 263 (02) : 245 - 247
  • [27] Quantum mechanics on a sphere and coherent states
    Kowalski, K
    Rembielinski, J
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (34): : 6035 - 6048
  • [28] The Bargmann representation for the quantum mechanics on a sphere
    Kowalski, K
    Rembielinski, J
    JOURNAL OF MATHEMATICAL PHYSICS, 2001, 42 (09) : 4138 - 4147
  • [29] Supersymmetric monopole quantum mechanics on a sphere
    Hong, ST
    Lee, J
    Lee, TH
    Oh, P
    PHYSICAL REVIEW D, 2005, 72 (01): : 1 - 6
  • [30] Wigner distribution function approach to dissipative problems in quantum mechanics with emphasis on decoherence and measurement theory
    O'Connell, RF
    JOURNAL OF OPTICS B-QUANTUM AND SEMICLASSICAL OPTICS, 2003, 5 (03) : S349 - S359