Robust Multi-Object Tracking With Local Appearance and Stable Motion Models

被引:0
|
作者
Hwang, Jubi [1 ]
Shim, Kyujin [1 ]
Ko, Kangwook [1 ]
Ha, Namkoo [2 ]
Kim, Changick [1 ]
机构
[1] Korea Adv Inst Sci & Technol KAIST, Sch Elect Engn, Daejeon 34141, South Korea
[2] LIG Nex1 Co Ltd, EO IR Syst Res & Dev Lab, Yongin 16911, South Korea
关键词
Multi-object tracking; tracking-by-detection; similarity metrics; matching strategy; VEHICLES;
D O I
10.1109/ACCESS.2023.3296731
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Multi-object tracking (MOT) has been steadily studied for video understanding in computer vision. However, existing MOT frameworks usually employ straightforward appearance or motion models and may struggle in dynamic environments with similar appearance and complex motion. In this paper, we present a robust MOT framework with local appearance and stable motion models to overcome these two hindrances. The framework incorporates object and local part detectors, a feature extractor, a keypoint extractor, and a data association method. For the data association, we utilize five types of similarity metrics and a cascaded matching strategy. The local appearance model is suggested to be used additionally with global appearance features of full bounding boxes to obtain discriminative features even for objects with a similar appearance. At the same time, the stable motion model considers the core of the body as the central point of the object and subdivides the body using a novel 12-tuple Kalman state vector to analyze complex motion. As a result, our new tracker achieves state-of-the-art performance on the DanceTrack test set, surpassing all other listed tracking systems in terms of both detection and tracking quality metrics, obtaining 61.3 HOTA, 82.3 DetA, 45.8 AssA, and 91.7 MOTA. The source code is available at https://github.com/Jubi-Hwang/Robust-MOT-with-Local-Appearance-and-Stable-Motion-Models.
引用
收藏
页码:77023 / 77033
页数:11
相关论文
共 50 条
  • [31] Multi-Object tracking using Multi-Channel Part Appearance Representation
    Nguyen Thi Lan Anh
    Khan, Furcian M.
    Negin, Farhood
    Bremond, Francois
    2017 14TH IEEE INTERNATIONAL CONFERENCE ON ADVANCED VIDEO AND SIGNAL BASED SURVEILLANCE (AVSS), 2017,
  • [32] Learning Sequential Visual Appearance Transformation for Online Multi-Object Tracking
    Sagastiberri, Itziar
    van de Gevel, Noud
    Garcia, Jorge
    Otaegui, Oihana
    2021 17TH IEEE INTERNATIONAL CONFERENCE ON ADVANCED VIDEO AND SIGNAL BASED SURVEILLANCE (AVSS 2021), 2021,
  • [33] Robust pedestrian multi-object tracking in the intelligent bus environment
    Wang, Shaohua
    Guo, Yuhao
    Li, Yicheng
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2024, 35 (10)
  • [34] Discriminative Label Propagation for Multi-Object Tracking with Sporadic Appearance Features
    Kumar, Amit K. C.
    De Vleeschouwer, Christophe
    2013 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2013, : 2000 - 2007
  • [35] Robust multi-object tracking using deep learning framework
    Pang, Sh Ch
    Du, Anan
    Yu, Zh. Zh.
    JOURNAL OF OPTICAL TECHNOLOGY, 2015, 82 (08) : 516 - 527
  • [36] Robust Multimodal and Multi-Object Tracking for Autonomous Driving Applications
    Perez, Marc
    Agudo, Antonio
    2023 21ST INTERNATIONAL CONFERENCE ON ADVANCED ROBOTICS, ICAR, 2023, : 100 - 106
  • [37] TracTrac: A fast multi-object tracking algorithm for motion estimation
    Heyman, Joris
    COMPUTERS & GEOSCIENCES, 2019, 128 : 11 - 18
  • [38] UCMCTrack: Multi-Object Tracking with Uniform Camera Motion Compensation
    Yi, Kefu
    Luo, Kai
    Luo, Xiaolei
    Huang, Jiangui
    Wu, Hao
    Hu, Rongdong
    Hao, Wei
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 7, 2024, : 6702 - 6710
  • [39] Robust Multi-object Tracking to Acquire Object Oriented Videos in Indoor Sports
    Kim, Yookyung
    Cho, Kee-Seong
    2016 INTERNATIONAL CONFERENCE ON INFORMATION AND COMMUNICATION TECHNOLOGY CONVERGENCE (ICTC 2016): TOWARDS SMARTER HYPER-CONNECTED WORLD, 2016, : 1104 - 1107
  • [40] UMTSS: a unifocal motion tracking surveillance system for multi-object tracking in videos
    Soma Hazra
    Shaurjya Mandal
    Banani Saha
    Sunirmal Khatua
    Multimedia Tools and Applications, 2023, 82 : 12401 - 12422