On the Sharp Estimates for Maximal Operators

被引:0
|
作者
Barakayev, Azamat M. [1 ]
机构
[1] Samarkand State Univ, Samarkand, Uzbekistan
关键词
maximal operator; Fourier transform; hypersurface; boundedness; OSCILLATORY INTEGRALS; HYPERSURFACES; AVERAGES;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The paper deals with boundedness problem for the maximal operators associated with hypersurfaces in the space of square integrable functions. A necessary condition for boundedness is given in the case of one nonvanishing principal curvature. A criterion for the boundedness is obtained for a particular class of convex hypersurfaces.
引用
收藏
页码:348 / 356
页数:9
相关论文
共 50 条
  • [31] Some Sharp Weighted Estimates for Multilinear Operators
    Liu Lanzhe
    [J]. BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2005, 23 (1-2): : 99 - 114
  • [32] Sharp estimates for Hardy operators on Heisenberg group
    Qingyan Wu
    Zunwei Fu
    [J]. Frontiers of Mathematics in China, 2016, 11 : 155 - 172
  • [33] Sharp norm estimates for a class of integral operators
    Luor, Dah-Chin
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2019, 67 (12): : 2504 - 2519
  • [34] Sharp estimates for Hardy operators on Heisenberg group
    Wu, Qingyan
    Fu, Zunwei
    [J]. FRONTIERS OF MATHEMATICS IN CHINA, 2016, 11 (01) : 155 - 172
  • [35] Sharp Estimates for Singular Values of Hankel Operators
    Alexander Pushnitski
    Dmitri Yafaev
    [J]. Integral Equations and Operator Theory, 2015, 83 : 393 - 411
  • [36] SHARP ESTIMATES AND BOUNDEDNESS FOR MULTILINEAR INTEGRAL OPERATORS
    Lu, Daqing
    [J]. FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2012, 27 (03): : 255 - 270
  • [37] On the Sharp Estimates for Convolution Operators with Oscillatory Kernel
    Ikromov, Isroil A.
    Ikromova, Dildora I.
    [J]. JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2024, 30 (03)
  • [38] SHARP WEIGHTED ESTIMATES FOR APPROXIMATING DYADIC OPERATORS
    Cruz-Uribe, David
    Maria Martell, Jose
    Perez, Carlos
    [J]. ELECTRONIC RESEARCH ANNOUNCEMENTS IN MATHEMATICAL SCIENCES, 2010, 17 : 12 - 19
  • [39] Sharp maximal function estimates for multilinear singular integrals
    Pérez, C
    Torres, RH
    [J]. HARMONIC ANALYSIS AT MOUNT HOLYOKE, 2003, 320 : 323 - 331
  • [40] Sharp integral estimates for the fractional maximal function and interpolation
    Kruglyak, Natan
    Kuznetsov, Evgeny A.
    [J]. ARKIV FOR MATEMATIK, 2006, 44 (02): : 309 - 326