Automatic Urban Scene-Level Binary Change Detection Based on a Novel Sample Selection Approach and Advanced Triplet Neural Network

被引:24
|
作者
Fang, Hong [1 ,2 ]
Guo, Shanchuan [1 ,2 ]
Wang, Xin [3 ]
Liu, Sicong [4 ]
Lin, Cong [5 ]
Du, Peijun [1 ,2 ]
机构
[1] Nanjing Univ, Sch Geog & Ocean Sci, Jiangsu Prov Key Lab Geog Informat Sci & Technol, Key Lab Land Satellite Remote Sensing Applicat,Min, Nanjing 210023, Peoples R China
[2] Nanjing Univ, Jiangsu Ctr Collaborat Innovat Geog Informat Resou, Nanjing 210023, Peoples R China
[3] Chengdu Univ Technol, State Key Lab Geohazard Prevent & Geoenvironm Prot, Chengdu 610059, Peoples R China
[4] Tongji Univ, Coll Surveying & Geoinformat, Shanghai 200092, Peoples R China
[5] Nanjing Res Inst Surveying Mapping & Geotech Inves, Nanjing 210019, Peoples R China
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2023年 / 61卷
基金
中国国家自然科学基金;
关键词
Automatic change detection; binary scene-level change detection; remote sensing; semantic changes; urban area; LAND-USE; IMAGES; CLASSIFICATION; SEGMENTATION;
D O I
10.1109/TGRS.2023.3235917
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Change detection is a process of identifying changed ground objects by comparing image pairs obtained at different times. Compared with the pixel-level and object-level change detection, scene-level change detection can provide the semantic changes at image level, so it is important for many applications related to change descriptions and explanations such as urban functional area change monitoring. Automatic scene-level change detection approaches do not require ground truth used for training, making them more appealing in practical applications than nonautomatic methods. However, the existing automatic scene-level change detection methods only utilize low-level and mid-level features to extract changes between bitemporal images, failing to fully exploit the deep information. This article proposed a novel automatic binary scene-level change detection approach based on deep learning to address these issues. First, the pretrained VGG-16 and change vector analysis are adopted for scene-level direct predetection to produce a scene-level pseudo-change map. Second, pixel-level classification is implemented by using decision tree, and a pixel-level to scene-level conversion strategy is designed to generate the other scene-level pseudo-change map. Third, the scene-level training samples are obtained by fusing the two pseudo-change maps. Finally, the binary scene-level change map is produced by training a novel scene change detection triplet network (SCDTN). The proposed SCDTN integrates a late-fusion subnetwork and an early fusion subnetwork, comprehensively mining the deep information in each raw image as well as the temporal correlation between two raw images. Experiments were performed on a public dataset and a new challenging dataset, and the results demonstrated the effectiveness and superiority of the proposed approach
引用
收藏
页数:18
相关论文
共 50 条
  • [11] Sample Selection Based Change Detection with Dilated Network Learning in Remote Sensing Images
    N. Venugopal
    Sensing and Imaging, 2019, 20
  • [12] Sample Selection Based Change Detection with Dilated Network Learning in Remote Sensing Images
    Venugopal, N.
    SENSING AND IMAGING, 2019, 20 (1):
  • [13] A fully automatic microcalcification detection approach based on deep convolution neural network
    Cai, Guanxiong
    Guo, Yanhui
    Zhang, Yaqin
    Qin, Genggeng
    Zhou, Yuanpin
    Lu, Yao
    MEDICAL IMAGING 2018: COMPUTER-AIDED DIAGNOSIS, 2018, 10575
  • [14] A Novel Approach based on Lightweight Deep Neural Network for Network Intrusion Detection
    Zhao, Ruijie
    Li, Zhaojie
    Xue, Zhi
    Ohtsuki, Tomoaki
    Gui, Guan
    2021 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE (WCNC), 2021,
  • [15] A Novel Random Neural Network Based Approach for Intrusion Detection Systems
    Qureshi, Ayyaz-Ul-Haq
    Larijani, Hadi
    Ahmad, Jawad
    Mtetwa, Nhamoinesu
    2018 10TH COMPUTER SCIENCE AND ELECTRONIC ENGINEERING CONFERENCE (CEEC), 2018, : 50 - 55
  • [16] A Novel Android Malware Detection Approach Based on Convolutional Neural Network
    Zhang, Yi
    Yang, Yuexiang
    Wang, Xiaolei
    ICCSP 2018: PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON CRYPTOGRAPHY, SECURITY AND PRIVACY, 2018, : 144 - 149
  • [17] A Novel Approach for Cantonese Rumor Detection based on Deep Neural Network
    Ke, Liang
    Chen, Xinyu
    Lu, Zhipeng
    Su, Hanjian
    Wang, Haizhou
    2020 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2020, : 1610 - 1615
  • [18] A Novel Change Detection Framework in Urban Area Using Multilevel Matching Feature and Automatic Sample Extraction Strategy
    Zhou, Yuanxiu
    Song, Yan
    Cui, Songxue
    Zhu, Haitian
    Sun, Jie
    Qin, Wenjun
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 : 3967 - 3987
  • [19] Urban change detection based on self-organizing feature map neural network
    Chen, X
    Li, XW
    Ma, JW
    IGARSS 2004: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM PROCEEDINGS, VOLS 1-7: SCIENCE FOR SOCIETY: EXPLORING AND MANAGING A CHANGING PLANET, 2004, : 3428 - 3431
  • [20] Face Detection Based on Full Convolution Neural Network of Four-level Cascading in Natural Scene
    Shi X.
    Zhou Y.
    Han W.
    Tiedao Xuebao/Journal of the China Railway Society, 2019, 41 (01): : 80 - 86