SiamHRnet-OCR: A Novel Deforestation Detection Model with High-Resolution Imagery and Deep Learning

被引:7
|
作者
Wang, Zhipan [1 ,2 ]
Liu, Di [1 ,2 ]
Liao, Xiang [3 ]
Pu, Weihua [4 ]
Wang, Zhongwu [5 ]
Zhang, Qingling [1 ,2 ]
机构
[1] Sun Yat Sen Univ, Shenzhen Key Lab Intelligent Microsatellite Conste, Shenzhen Campus,66,Gongchang Rd, Shenzhen 518107, Peoples R China
[2] Sun Yat Sen Univ, Sch Aeronaut & Astronaut, Shenzhen Campus,66,Gongchang Rd, Shenzhen 518107, Peoples R China
[3] Chongqing Pioneer Satellite Technol Co LTD, Chongqing 401420, Peoples R China
[4] Shenzhen Aerosp Dongfanghong Satellite Co LTD, Shenzhen 518061, Peoples R China
[5] Minist Nat Resources, Land Satellite Remote Sensing Applicat Ctr, Beijing 100048, Peoples R China
基金
中国国家自然科学基金;
关键词
carbon neutrality; deep learning; deforestation detection; large-scale applications; change detection; REMOTE-SENSING IMAGES; NETWORK; CLASSIFICATION; SEGMENTATION; DATASET; FUSION; UNET;
D O I
10.3390/rs15020463
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Forests play a critical role in global carbon cycling, and continuous forest destruction together with other factors has accelerated global warming. Furthermore, continued decline of forest areas will critically hinder the accomplishment of carbon neutrality goals. Although the geographical location of deforestation can now be rapidly and accurately detected with remote sensing technology, current forest change products are still not fine-grained, especially from the perspective of carbon trading. Here, we used a deep learning method to detect deforestation in large regions based on 2 m high-resolution optical remote sensing images. Firstly, we proposed a new deforestation detection dataset, which was generated from 11 provincial regions in the Yangtze River Economic Zone of China, containing a total number of 8330 samples (the size of each sample being 512 x 512 pixels). Then, a new deforestation detection model, SiamHRnet-OCR, was designed, based on this dataset. Compared with other deep learning models, SiamHRnet-OCR achieves better results in terms of precision, F1-score, and OA indicator: 0.6482, 0.6892, and 0.9898, respectively. Finally, two large-scale scenarios of deforestation experiments in Southern China were further tested; the deforestation detection results demonstrate that SiamHRnet-OCR can not only detect deforestation effectively but also capture the accurate boundary of the changing area.
引用
收藏
页数:27
相关论文
共 50 条
  • [31] Building footprint extraction and counting on very high-resolution satellite imagery using object detection deep learning framework
    Wahidya Nurkarim
    Arie Wahyu Wijayanto
    Earth Science Informatics, 2023, 16 : 515 - 532
  • [32] Building footprint extraction and counting on very high-resolution satellite imagery using object detection deep learning framework
    Nurkarim, Wahidya
    Wijayanto, Arie Wahyu
    EARTH SCIENCE INFORMATICS, 2023, 16 (01) : 515 - 532
  • [33] Insulator Detection for High-Resolution Satellite Images Based on Deep Learning
    Zhou, Fangrong
    Jin, Weishi
    Zheng, Zezhong
    Mou, Fan
    Li, Zhongnian
    Ma, Yutang
    Wei, Bu
    Huang, Shuangde
    Wang, Qun
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2023, 20
  • [34] MixerNet-SAGA A Novel Deep Learning Architecture for Superior Road Extraction in High-Resolution Remote Sensing Imagery
    Wu, Wei
    Ren, Chao
    Yin, Anchao
    Zhang, Xudong
    APPLIED SCIENCES-BASEL, 2023, 13 (18):
  • [35] Simulation of deforestation in eastern Amazonia using a high-resolution model
    Gandu, AW
    Cohen, JCP
    de Souza, JRS
    THEORETICAL AND APPLIED CLIMATOLOGY, 2004, 78 (1-3) : 123 - 135
  • [36] Simulation of deforestation in eastern Amazonia using a high-resolution model
    A. W. Gandu
    J. C. P. Cohen
    J. R. S. de Souza
    Theoretical and Applied Climatology, 2004, 78 : 123 - 135
  • [37] Detection and recognition of vehicles in high-resolution SAR imagery
    Roller, W
    Peinsipp-Byma, E
    Berger, A
    Korres, E
    SIGNAL PROCESSING, SENSOR FUSION, AND TARGET RECOGNITION X, 2001, 4380 : 142 - 152
  • [38] Detection of Saturation in High-Resolution Pushbroom Satellite Imagery
    Dai, Chunli
    Howat, Ian M.
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2018, 11 (05) : 1684 - 1693
  • [39] Change Detection Based on Supervised Contrastive Learning for High-Resolution Remote Sensing Imagery
    Wang, Jue
    Zhong, Yanfei
    Zhang, Liangpei
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [40] A Deep Learning Model With Capsules Embedded for High-Resolution Image Classification
    Guo, Yujuan
    Liao, Jingjuan
    Shen, Guozhuang
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 : 214 - 223