Thermal cycling performance of a Shell-and-tube latent heat thermal energy storage system with paraffin/graphite matrix composite

被引:2
|
作者
Saglam, Mehmet [1 ]
Ceboglu, Esen [1 ]
Birinci, Soner [1 ]
Sarper, Bugra [2 ]
Aydin, Orhan [1 ]
机构
[1] Karadeniz Tech Univ, Dept Mech Engn, TR-61080 Trabzon, Turkiye
[2] Tarsus Univ, Dept Mech Engn, TR-33400 Tarsus, Turkiye
关键词
Thermal energy storage; Phase change material; Paraffin/graphite matrix composite; Charge; Discharge; PARAFFIN/EXPANDED GRAPHITE COMPOSITE; PHASE-CHANGE; CONDUCTIVITY; BEHAVIOR; PARAFFIN; PCM;
D O I
10.1016/j.est.2024.110697
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
In this paper, thermal cycling behavior of paraffin/graphite matrix (PGM) composite in shell-and-tube configuration is investigated experimentally. It is aimed to investigate the effects of various graphite matrix bulk densities (50 g/L and 75 g/L) and compaction speeds (12 mm/min, 90 mm/min, 120 mm/min) on the leakage characteristics, dimensional changes, structural distortions, and thermal performance (specifically, meltingsolidification durations). A total of 120 cycles of charge-discharge experiments are conducted, during which the aforementioned parameters are continuously monitored and recorded. The findings indicate that PGM composites exhibit no notable leakage. However, when comparing different scenarios, it is seen that a compaction speed of 120 mm/min leads to a greater leakage of PCM compared to the others. The dimensional changes of all samples are attributed to the thermal expansion and contraction of paraffin. Following the initial cycles, the samples shrink 2.5 % in diameter. The extent of structural deformation is influenced by two factors: the bulk density of the graphite matrix and the cycle count. For a bulk density of 50 g/L, the surface exhibits obvious cracks after 48 cycles, which progressively expand as the cycle number increases. However, when the bulk density reaches 75 g/L, no evidence of cracking is observed after 120 cycles. The results indicate that the composite with a bulk density of 75 g/L is less affected by cycling due to its higher thermal conductivity in comparison to the composite with a bulk density of 50 g/L. Additionally, the temperature distribution in the radial direction is more uniform in the former composite. While certain samples exhibit structural deformations, it is important to note that the thermal performance and structural integrity are preserved among all the samples tested.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Thermal performance of a shell-and-tube latent heat thermal energy storage unit: Role of annular fins
    Yang, Xiaohu
    Lu, Zhao
    Bai, Qingsong
    Zhang, Qunli
    Jin, Liwen
    Yan, Jinyue
    [J]. APPLIED ENERGY, 2017, 202 : 558 - 570
  • [2] Analytical solution of heat transfer in a shell-and-tube latent thermal energy storage system
    Bechiri, Mohammed
    Mansouri, Kacem
    [J]. RENEWABLE ENERGY, 2015, 74 : 825 - 838
  • [3] Heat transfer performance of a finned shell-and-tube latent heat thermal energy storage unit in the presence of thermal radiation
    Shen, Zu-Guo
    Chen, Shuai
    Chen, Ben
    [J]. JOURNAL OF ENERGY STORAGE, 2022, 45
  • [4] Thermal performance optimization and evaluation of a radial finned shell-and-tube latent heat thermal energy storage unit
    Pu, Liang
    Zhang, Shengqi
    Xu, Lingling
    Li, Yanzhong
    [J]. APPLIED THERMAL ENGINEERING, 2020, 166
  • [5] Evaluation of different melting performance enhancement structures in a shell-and-tube latent heat thermal energy storage system
    Ge, Ruihuan
    Li, Qi
    Li, Chuan
    Liu, Qing
    [J]. RENEWABLE ENERGY, 2022, 187 : 829 - 843
  • [6] Simplified model for estimating performance of latent heat thermal energy storage of a shell-and-tube type unit
    Nakaso, K
    Nogami, S
    Takahashi, N
    Hamada, Y
    Fukai, J
    [J]. KAGAKU KOGAKU RONBUNSHU, 2004, 30 (04) : 474 - 479
  • [7] A combined heat transfer enhancement technique for shell-and-tube latent heat thermal energy storage
    Woloszyn, Jerzy
    Szopa, Krystian
    [J]. RENEWABLE ENERGY, 2023, 202 : 1342 - 1356
  • [8] Enhancing thermal performance in shell-and-tube latent heat thermal energy storage units: An experimental and numerical study of shell geometry effects
    Parsa, Nazila
    Kamkari, Babak
    Abolghasemi, Hossein
    [J]. INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2024, 154
  • [9] Numerical investigation of a shell-and-tube latent heat thermal energy storage system for urban heating network
    Lamrani, Bilal
    Kousksou, Tarik
    [J]. JOURNAL OF ENERGY STORAGE, 2021, 43
  • [10] Comparative study of the thermal performance of four different shell-and-tube heat exchangers used as latent heat thermal energy storage systems
    Gasia, Jaume
    Diriken, Jan
    Bourke, Malcolm
    Van Bael, Johan
    Cabeza, Luisa F.
    [J]. RENEWABLE ENERGY, 2017, 114 : 934 - 944