EV-FL: Efficient Verifiable Federated Learning With Weighted Aggregation for Industrial IoT Networks

被引:0
|
作者
Yu, Haiyang [1 ]
Xu, Runtong [1 ]
Zhang, Hui [1 ]
Yang, Zhen [1 ]
Liu, Huan [2 ]
机构
[1] Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
[2] Arizona State Univ, Sch Comp Informat & Decis Syst Engn, Ira A Fulton Sch Engn, Tempe, AZ 85281 USA
基金
北京市自然科学基金; 中国国家自然科学基金;
关键词
Federated learning; verifiability; industrial IoT networks; zero-knowledge proof; weighted aggregation; SECURE; SMART;
D O I
10.1109/TNET.2023.3328635
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
The rapid development of Industrial IoT (IIoT) opens up promising possibilities for data analysis and machine learning in IIoT networks. As a distributed paradigm, federated learning (FL) allows numerous IIoT devices to collaboratively train a global model without collecting their local data together in central servers. Unfortunately, a centralized server used to aggregate local gradients can be compromised and forge the result, which incurs the need for aggregation verification. Several approaches focusing on verifying the correctness of aggregation have been proposed. However, it is still an open problem since devices have to devote more computation resources for verification, which are especially not friendly to resource-constrained IIoT devices. Furthermore, verifying weighted aggregation has not been supported in existing approaches. In this paper, we propose an efficient verifiable federated learning approach for IIoT networks, which verifies the aggregation of gradients and requires lowest burden on IIoT devices by introducing zero-knowledge proof techniques. Moreover, our design supports weighted aggregation verification to validate the aggregation of weighted gradients in the cloud server. By comparing the proposed approach with the state-of-the-art schemes including VerifyNet and VeriFL, we demonstrate the superior performance of our approach for resource-constrained devices, which minimizes the computational overheads of the IIoT devices.
引用
收藏
页码:1723 / 1737
页数:15
相关论文
共 50 条
  • [1] Accountable and Verifiable Secure Aggregation for Federated Learning in IoT Networks
    Yang, Xiaoyi
    Zhao, Yanqi
    Chen, Dian
    Yu, Yong
    Du, Xiaojiang
    Guizani, Mohsen
    [J]. IEEE NETWORK, 2022, 36 (05): : 173 - 179
  • [2] Efficient and Secure Federated Learning With Verifiable Weighted Average Aggregation
    Yang, Zhen
    Zhou, Ming
    Yu, Haiyang
    Sinnott, Richard O.
    Liu, Huan
    [J]. IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2023, 10 (01): : 205 - 222
  • [3] WVFL: Weighted Verifiable Secure Aggregation in Federated Learning
    Zhong, Yijian
    Tan, Wuzheng
    Xu, Zhifeng
    Chen, Shixin
    Weng, Jiasi
    Weng, Jian
    [J]. IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (11): : 19926 - 19936
  • [4] VREFL: Verifiable and Reconnection-Efficient Federated Learning in IoT scenarios
    Ye, Heng
    Liu, Jiqiang
    Zhen, Hao
    Jiang, Wenbin
    Wang, Bin
    Wang, Wei
    [J]. JOURNAL OF NETWORK AND COMPUTER APPLICATIONS, 2022, 207
  • [5] VeriFL: Communication-Efficient and Fast Verifiable Aggregation for Federated Learning
    Guo, Xiaojie
    Liu, Zheli
    Li, Jin
    Gao, Jiqiang
    Hou, Boyu
    Dong, Changyu
    Baker, Thar
    [J]. IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2021, 16 : 1736 - 1751
  • [6] EHFL: Efficient Horizontal Federated Learning With Privacy Protection and Verifiable Aggregation
    Zhang, Zehu
    Li, Yanping
    Zhang, Kai
    [J]. IEEE Internet of Things Journal, 2024, 11 (22) : 36884 - 36894
  • [7] Efficient Verifiable Protocol for Privacy-Preserving Aggregation in Federated Learning
    Eltaras, Tamer
    Sabry, Farida
    Labda, Wadha
    Alzoubi, Khawla
    Malluhi, Qutaibah
    [J]. IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2023, 18 : 2977 - 2990
  • [8] Communication-Efficient Federated Learning for Digital Twin Edge Networks in Industrial IoT
    Lu, Yunlong
    Huang, Xiaohong
    Zhang, Ke
    Maharjan, Sabita
    Zhang, Yan
    [J]. IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2021, 17 (08) : 5709 - 5718
  • [9] Verifiable and Secure Aggregation Scheme for Federated Learning
    Ren, Yanli
    Fu, Yanxia
    Li, Yerong
    [J]. Beijing Youdian Daxue Xuebao/Journal of Beijing University of Posts and Telecommunications, 2023, 46 (03): : 49 - 55
  • [10] Communication-Efficient and Privacy-Preserving Verifiable Aggregation for Federated Learning
    Peng, Kaixin
    Shen, Xiaoying
    Gao, Le
    Wang, Baocang
    Lu, Yichao
    [J]. ENTROPY, 2023, 25 (08)