The syzygies of the ideal (xN1, xN2, xN3, xN4) in the hypersurface ring defined by xn1+xn2+xn3+xn4

被引:1
|
作者
Kustin, Andrew R. [1 ]
Rebecca, R. G. [2 ]
Vraciu, Adela [1 ]
机构
[1] Univ South Carolina, Dept Math, Columbia, SC 29208 USA
[2] George Mason Univ, Dept Math Sci, Fairfax, VA 22030 USA
关键词
Lefschetz properties; Matrix factorization; Maximal Cohen-Macaulay module; Order ideal; Rings of finite CM-type; Syzygy; Ulrich module; COHEN-MACAULAY MODULES; COMPLETE INTERSECTION; ASYMPTOTIC-BEHAVIOR; POWERS;
D O I
10.1016/j.jalgebra.2022.10.020
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let k be an arbitrary field and n, d, and r be non-negative integers with r at most n - 1. Let N be the integer dn+ r, P be the polynomial ring k [x1, x2, x3, x4], fn be the polynomial xn1+xn2 +xn3 +xn4 in P, Cd,n,r be the ideal (xN1, xN2 , xN3 , xN4 ) of P, P over line n be the hypersurface ring P/(fn), Qd,n,r be the quotient ring module of Qd,n,r as a P over line n/Cd,n,rP over line n and Omega id,n,r be the i-th syzygy P over line n-module. We prove that Omega 3d,n,r is isomorphic to the direct sum (Omega 30,n,r)a (R) (Omega 40,n,r)b (R) (P over line n)c, for some non-negative integers a, b, and c. (The parameters a, b, and c depend on d and the characteristic of k; however, they are independent of n and r.) Furthermore, if the characteristic of k is zero, then a = 2d + 1 and b = c = 0.(c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页码:205 / 242
页数:38
相关论文
共 50 条
  • [32] On the dynamics of Xn+1 = pn+Xn-1/Xn
    Kulenovic, MRS
    Ladas, G
    Overdeep, CB
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2003, 9 (11) : 1053 - 1056
  • [33] Global attractivity of the difference equation xn+1 = (xn+αxn-1)/(β+xn)
    Chen, Haibo
    Wang, Haihua
    APPLIED MATHEMATICS AND COMPUTATION, 2006, 181 (02) : 1431 - 1438
  • [34] Onthedynamicsofxn+1=δxn-3t+1+xn-4t+1/A+xn-4t+1
    HONG LiangYANG YanhuaInstitute of Physics Electronic EngineeringXinyang Normal UniversityXinyang ChinaDepartment of Computer ScienceXinyang Agricultural CollegeXinyang China
    商丘师范学院学报, 2010, 26 (09) : 42 - 46
  • [35] On the recursive sequences xn+1 = -αxn-1β±xn
    El-Owaidy, HM
    Ahmed, AM
    Mousa, MS
    APPLIED MATHEMATICS AND COMPUTATION, 2003, 145 (2-3) : 747 - 753
  • [36] On the Recursive Sequence xn+1 = xn-7/1+xn-3
    Simsek, D.
    Kyzy, P. Esengul
    Kyzy, M. Imash
    FILOMAT, 2019, 33 (05) : 1381 - 1386
  • [37] On the trichotomy character of xn+1 = α+γxn-1/A+Bxn+xn-2
    Chatterjee, E
    Grove, EA
    Kostrov, Y
    Ladas, G
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2003, 9 (12) : 1113 - 1128
  • [38] On the recursive sequence xn+1=α+βxn-k/f(xn, ... ,xn-k+1)
    Stevic, S
    TAIWANESE JOURNAL OF MATHEMATICS, 2005, 9 (04): : 583 - 593
  • [39] On the recursive sequence xn+1 = xn-(5k+9)/1+xn-4xn-9 ... xn-(5k+4)
    Simsek, Dagistan
    Cinar, Cengiz
    Yalcinkaya, Ibrahim
    TAIWANESE JOURNAL OF MATHEMATICS, 2008, 12 (05): : 1087 - 1099
  • [40] On the difference equation xn = xn-2/(bn + cnxn-1xn-2)
    Stevic, Stevo
    APPLIED MATHEMATICS AND COMPUTATION, 2011, 218 (08) : 4507 - 4513