Multiscale modelling of Si based Li-ion battery anodes

被引:4
|
作者
Silveri, Fabrizio [1 ,2 ]
Alberghini, Matteo [1 ]
Esnault, Vivien [3 ]
Bertinetti, Andrea [1 ]
Rouchon, Virgile [3 ]
Giuliano, Mattia [4 ]
Gudendorff, Gauthier [3 ]
Zhao, Chen [5 ]
Bikard, Jerome [5 ]
Sgroi, Mauro [2 ,4 ]
Tommasi, Alessio [1 ]
Petit, Martin [3 ]
机构
[1] Gemmate Technol, Via Reano 31, I-10090 Buttigliera Alta, Italy
[2] Univ Torino, Dipartimento Chim, Via Pietro Giuria 7, I-10125 Turin, Italy
[3] IFP Energies nouvelles, Rond Point echangeur Solaize, Solaize, France
[4] CRF SCpA, Str Torino 50, I-10043 Orbassano, Italy
[5] Solvay R&I, 85 Ave Freres Perret, F-69190 Saint Fons, France
基金
欧盟地平线“2020”;
关键词
Lithium-ion batteries; Multiscale modelling; Materials modelling; Silicon-based anode; Density functional theory; Finite elements method; Discrete element method; NEGATIVE ELECTRODE; SILICON; PERFORMANCE; LITHIATION; NANOWIRES; MECHANISM; TRANSPORT;
D O I
10.1016/j.jpowsour.2024.234109
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Silicon -based composite anodes continue to raise interest for their high theoretical specific capacity, but the complexity of their behaviour during battery operation presents an obstacle to both their characterization and their practical application. In this paper we present a comprehensive multiscale model of a Si -based composite anode, based on a detailed characterization and encompassing nano-, micro-, and meso-scale details. The model is used to explore the relationship between the chemo-mechanical changes in the anode components and the electrode stability during battery operation, through the prediction of the morphological evolution of the material during the lithiation process. Through the combined analysis of DFT, FEM, and DEM models we highlight the influence of Si and SiO2 lithiation on electrode swelling and damage, and the predominant influence of particle -level morphology on electrochemical behaviour.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Cost-effective approach for structural evolution of Si-based multicomponent for Li-ion battery anodes
    Hong, Dongki
    Ryu, Jaegeon
    Shin, Sunghee
    Park, Soojin
    JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (05) : 2095 - 2101
  • [22] Optimized Ga-based nanocomposite for superior Li-ion battery anodes
    Yoon, Jeong-Myeong
    Lee, Young-Han
    Park, Cheol-Min
    MATERIALS TODAY ENERGY, 2023, 35
  • [23] Li-Compound Anodes: A Classification for High-Performance Li-Ion Battery Anodes
    Nam, Ki-Hun
    Jeong, Sangmin
    Yu, Byeong-Chul
    Choi, Jeong-Hee
    Jeon, Ki-Joon
    Park, Cheol-Min
    ACS NANO, 2022, 16 (09) : 13704 - 13714
  • [25] α-Graphyne nanotubes as a promising material for Li-ion battery anodes
    Bahrami, Mina
    Momen, Fatemeh
    Shayeganfar, Farzaneh
    Ramazani, Ali
    COMPUTATIONAL MATERIALS SCIENCE, 2024, 240
  • [26] DNA metallization for high performance Li-ion battery anodes
    Kim, Dong Jun
    Woo, Min-Ah
    Jung, Ye Lim
    Bharathi, K. Kamala
    Park, Hyun Gyu
    Kim, Do Kyung
    Choi, Jang Wook
    NANO ENERGY, 2014, 8 : 17 - 24
  • [27] Sintered polymeric binders for Li-ion battery alloy anodes
    Hatchard, T. D.
    Fielden, R. A.
    Obrovac, M. N.
    CANADIAN JOURNAL OF CHEMISTRY, 2018, 96 (07) : 765 - 770
  • [28] Electrospun Si and Si/C Fiber Anodes for Li-Ion Batteries
    Mondal, Abhishek
    Wycisk, Ryszard
    Waugh, John
    Pintauro, Peter
    BATTERIES-BASEL, 2023, 9 (12):
  • [29] Multiscale computational fluid dynamics modelling of spatial ALD on porous li-ion battery electrodes
    Li, Zoushuang
    Chen, Yuanxiao
    Nie, Yufeng
    Yang, Fan
    Liu, Xiao
    Gao, Yuan
    Shan, Bin
    Chen, Rong
    CHEMICAL ENGINEERING JOURNAL, 2024, 479
  • [30] Multiscale analysis of prelithiated silicon nanowire for Li-ion battery
    Chang, Seongmin
    Moon, Janghyuk
    Cho, Kyeongjae
    Cho, Maenghyo
    COMPUTATIONAL MATERIALS SCIENCE, 2015, 98 : 99 - 104