SurfFlow: High-throughput surface energy calculations for arbitrary crystals

被引:0
|
作者
Yalcin, Firat [1 ]
Wolloch, Michael [1 ,2 ]
机构
[1] Computat Mat Phys, Kolingasse 14-16, A-1090 Vienna, Austria
[2] Vasp Software GmbH, Berggasse 21-14, A-1090 Vienna, Austria
基金
奥地利科学基金会;
关键词
High-throughput; Surface energies; Density functional theory; Wulff construction; SCIENCE; METALS; NANOCRYSTALS; PREDICTION; DENSITY; FACETS; GROWTH;
D O I
10.1016/j.commatsci.2024.112799
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We introduce SurfFlow, an open-source high-throughput workflow package designed for automated firstprinciples calculations of surface energies in arbitrary crystals. Our package offers a comprehensive solution capable of handling multi-element crystals, nonstoichiometric compositions, and asymmetric slabs, for all potential terminations. To streamline the computational process, SurfFlow employs an efficient pre-screening method that discards surfaces with suspected high surface energy before conducting resource-intensive density functional theory computations. The results generated are seamlessly compiled into an optimade-compliant database, ensuring easy access and compatibility. Additionally, a user-friendly web interface facilitates workflow submission and management, provides result visualization, and enables the examination of Wulff shapes. SurfFlow represents a valuable tool for researchers looking to explore surface energies and their implications in a diverse range of systems.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] SURFFLOW: High-throughput surface energy calculations for arbitrary crystals
    Yalcin, Firat
    Wolloch, Michael
    [J]. Computational Materials Science, 2024, 234
  • [2] Robust protocols for high-throughput alchemical free energy calculations
    Bosisio, Stefano
    Michel, Julien
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 251
  • [3] Pseudopotentials for high-throughput DFT calculations
    Garrity, Kevin F.
    Bennett, Joseph W.
    Rabe, Karin M.
    Vanderbilt, David
    [J]. COMPUTATIONAL MATERIALS SCIENCE, 2014, 81 : 446 - 452
  • [4] Applicability of Free Energy Calculations Using High-Throughput Grid Approach
    Kmunicek, Jan
    Kulhanek, Petr
    Strelcova, Zora
    [J]. DATA DRIVEN E-SCIENCE, ISGC 2010: USE CASES AND SUCCESSFUL APPLICATIONS OF DISTRIBUTED COMPUTING INFRASTRUCTURES, 2011, : 459 - 474
  • [5] Surface Free Energy Activated High-Throughput Cell Sorting
    Zhang, Xinru
    Zhang, Qian
    Yan, Tao
    Jiang, Zeyi
    Zhang, Xinxin
    Zuo, Yi Y.
    [J]. ANALYTICAL CHEMISTRY, 2014, 86 (18) : 9350 - 9355
  • [6] HTESP (High-throughput electronic structure package): A package for high-throughput ab initio calculations
    Nepal, Niraj K.
    Canfield, Paul C.
    Wang, Lin-Lin
    [J]. COMPUTATIONAL MATERIALS SCIENCE, 2024, 244
  • [7] High-throughput calculations of magnetic topological materials
    Xu, Yuanfeng
    Elcoro, Luis
    Song, Zhi-Da
    Wieder, Benjamin J.
    Vergniory, M. G.
    Regnault, Nicolas
    Chen, Yulin
    Felser, Claudia
    Bernevig, B. Andrei
    [J]. NATURE, 2020, 586 (7831) : 702 - +
  • [8] High-throughput calculations of magnetic topological materials
    Yuanfeng Xu
    Luis Elcoro
    Zhi-Da Song
    Benjamin J. Wieder
    M. G. Vergniory
    Nicolas Regnault
    Yulin Chen
    Claudia Felser
    B. Andrei Bernevig
    [J]. Nature, 2020, 586 : 702 - 707
  • [9] High-throughput calculations in the context of alloy design
    Axel van de Walle
    Mark Asta
    [J]. MRS Bulletin, 2019, 44 : 252 - 256
  • [10] High-throughput calculations in the context of alloy design
    van de Walle, Axel
    Asta, Mark
    [J]. MRS BULLETIN, 2019, 44 (04) : 252 - 256