High-throughput calculations of magnetic topological materials

被引:311
|
作者
Xu, Yuanfeng [1 ]
Elcoro, Luis [2 ]
Song, Zhi-Da [3 ]
Wieder, Benjamin J. [3 ,4 ,5 ]
Vergniory, M. G. [6 ,7 ]
Regnault, Nicolas [3 ,8 ]
Chen, Yulin [9 ,10 ,11 ,12 ,13 ]
Felser, Claudia [14 ,15 ]
Bernevig, B. Andrei [1 ,3 ,16 ]
机构
[1] Max Planck Inst Microstruct Phys, Halle, Germany
[2] Univ Basque Country UPV EHU, Dept Condensed Matter Phys, Bilbao, Spain
[3] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA
[4] MIT, Dept Phys, Cambridge, MA 02139 USA
[5] Northeastern Univ, Dept Phys, Boston, MA 02115 USA
[6] Donostia Int Phys Ctr, Donostia San Sebastian, Spain
[7] Basque Fdn Sci, IKERBASQUE, Bilbao, Spain
[8] Univ Paris Diderot, Lab Phys Ecole Normale Super, Sorbonne Univ, CNRS,ENS,Univ PSL,Sorbonne Paris Cite, Paris, France
[9] ShanghaiTech Univ, Sch Phys Sci & Technol, Shanghai, Peoples R China
[10] ShanghaiTech Lab Topol Phys, Shanghai, Peoples R China
[11] Univ Oxford, Dept Phys, Clarendon Lab, Oxford, England
[12] Tsinghua Univ, State Key Lab Low Dimens Quantum Phys, Dept Phys, Beijing, Peoples R China
[13] Tsinghua Univ, Collaborat Innovat Ctr Quantum Matter, Beijing, Peoples R China
[14] Max Planck Inst Chem Phys Solids, Dresden, Germany
[15] Harvard Univ, Fac Arts & Sci, Ctr Nanoscale Syst, Cambridge, MA 02138 USA
[16] Free Univ Berlin, Dept Phys, Berlin, Germany
基金
英国工程与自然科学研究理事会; 欧洲研究理事会; 美国国家科学基金会;
关键词
D O I
10.1038/s41586-020-2837-0
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The discoveries of intrinsically magnetic topological materials, including semimetals with a large anomalous Hall effect and axion insulators(1-3), have directed fundamental research in solid-state materials. Topological quantum chemistry(4) has enabled the understanding of and the search for paramagnetic topological materials(5,6). Using magnetic topological indices obtained from magnetic topological quantum chemistry (MTQC)(7), here we perform a high-throughput search for magnetic topological materials based on first-principles calculations. We use as our starting point the Magnetic Materials Database on the Bilbao Crystallographic Server, which contains more than 549 magnetic compounds with magnetic structures deduced from neutron-scattering experiments, and identify 130 enforced semimetals (for which the band crossings are implied by symmetry eigenvalues), and topological insulators. For each compound, we perform complete electronic structure calculations, which include complete topological phase diagrams using different values of the Hubbard potential. Using a custom code to find the magnetic co-representations of all bands in all magnetic space groups, we generate data to be fed into the algorithm of MTQC to determine the topology of each magnetic material. Several of these materials display previously unknown topological phases, including symmetry-indicated magnetic semimetals, three-dimensional anomalous Hall insulators and higher-order magnetic semimetals. We analyse topological trends in the materials under varying interactions: 60 per cent of the 130 topological materials have topologies sensitive to interactions, and the others have stable topologies under varying interactions. We provide a materials database for future experimental studies and open-source code for diagnosing topologies of magnetic materials.
引用
收藏
页码:702 / +
页数:9
相关论文
共 50 条
  • [1] High-throughput calculations of magnetic topological materials
    Yuanfeng Xu
    Luis Elcoro
    Zhi-Da Song
    Benjamin J. Wieder
    M. G. Vergniory
    Nicolas Regnault
    Yulin Chen
    Claudia Felser
    B. Andrei Bernevig
    Nature, 2020, 586 : 702 - 707
  • [2] High-throughput first-principle prediction of collinear magnetic topological materials
    Yunlong Su
    Jiayu Hu
    Xiaochan Cai
    Wujun Shi
    Yunyouyou Xia
    Yuanfeng Xu
    Xuguang Xu
    Yulin Chen
    Gang Li
    npj Computational Materials, 8
  • [3] High-throughput first-principle prediction of collinear magnetic topological materials
    Su, Yunlong
    Hu, Jiayu
    Cai, Xiaochan
    Shi, Wujun
    Xia, Yunyouyou
    Xu, Yuanfeng
    Xu, Xuguang
    Chen, Yulin
    Li, Gang
    NPJ COMPUTATIONAL MATERIALS, 2022, 8 (01)
  • [4] High-throughput design of magnetic materials
    Zhang, Hongbin
    ELECTRONIC STRUCTURE, 2021, 3 (03):
  • [5] The AFLOW standard for high-throughput materials science calculations
    Calderon, Camilo E.
    Plata, Jose J.
    Toher, Cormac
    Oses, Corey
    Levy, Ohad
    Fornari, Marco
    Natan, Amir
    Mehl, Michael J.
    Hart, Gus
    Nardelli, Marco Buongiorno
    Curtarolo, Stefano
    COMPUTATIONAL MATERIALS SCIENCE, 2015, 108 : 233 - 238
  • [6] High-throughput studies of novel magnetic materials in borides
    Zhang, Zhen
    Belashchenko, Kirill D.
    Antropov, Vladimir
    AIP ADVANCES, 2025, 15 (03)
  • [7] 'High-throughput search for magnetic and topological order in transition metal oxides
    Frey, Nathan C.
    Horton, Matthew K.
    Munro, Jason M.
    Griffin, Sinead M.
    Persson, Kristin A.
    Shenoy, Vivek B.
    SCIENCE ADVANCES, 2020, 6 (50)
  • [8] High-throughput search for magnetic topological materials using spin-orbit spillage, machine learning, and experiments
    Choudhary, Kamal
    Garrity, Kevin F.
    Ghimire, Nirmal J.
    Anand, Naween
    Tavazza, Francesca
    PHYSICAL REVIEW B, 2021, 103 (15)
  • [9] Reaction sintering as a high-throughput approach for magnetic materials development
    Goll, Dagmar
    Loeffler, Ralf
    Hohs, Dominic
    Schneider, Gerhard
    SCRIPTA MATERIALIA, 2018, 146 : 355 - 361
  • [10] Pseudopotentials for high-throughput DFT calculations
    Garrity, Kevin F.
    Bennett, Joseph W.
    Rabe, Karin M.
    Vanderbilt, David
    COMPUTATIONAL MATERIALS SCIENCE, 2014, 81 : 446 - 452