A new honey adulteration detection approach using hyperspectral imaging and machine learning

被引:15
|
作者
Phillips, Tessa [1 ]
Abdulla, Waleed [1 ]
机构
[1] Univ Auckland, Elect Comp & Software Engn, Auckland 1010, New Zealand
关键词
Honey fraud detection; Honey adulteration; Hyperspectral imaging; Machine learning; CANE SUGAR ADULTERATION; FOOD QUALITY; SPECTROSCOPY;
D O I
10.1007/s00217-022-04113-9
中图分类号
TS2 [食品工业];
学科分类号
0832 ;
摘要
This paper develops a new approach to fraud detection in honey. Specifically, we examine adulterating honey with sugar and use hyperspectral imaging and machine learning techniques to detect adulteration. The main contributions of this paper are introducing a new feature smoothing technique to conform to the classification model used to detect the adulterated samples and the perpetration of an adulterated honey data set using hyperspectral imaging, which has been made available online for the first time. Above 95% accuracy was achieved for binary adulteration detection and multi-class classification between different adulterant concentrations. The system developed in this paper can be used to prevent honey fraud as a reliable, low cost, data-driven solution.
引用
收藏
页码:259 / 272
页数:14
相关论文
共 50 条
  • [41] Detection of Black Spot Disease on Kimchi Cabbage Using Hyperspectral Imaging and Machine Learning Techniques
    Kuswidiyanto, Lukas Wiku
    Kim, Dong Eok
    Fu, Teng
    Kim, Kyoung Su
    Han, Xiongzhe
    AGRICULTURE-BASEL, 2023, 13 (12):
  • [42] Using visible and NIR hyperspectral imaging and machine learning for nondestructive detection of nutrient contents in sorghum
    Wu, Kai
    Zhang, Zilin
    He, Xiuhan
    Li, Gangao
    Zheng, Decong
    Li, Zhiwei
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [43] Machine learning based framework for the detection of mushroom browning using a portable hyperspectral imaging system
    Yang, Kai
    Zhao, Ming
    Argyropoulos, Dimitrios
    POSTHARVEST BIOLOGY AND TECHNOLOGY, 2025, 219
  • [44] Estimation of soil properties using Hyperspectral imaging and Machine learning
    Chlouveraki, Eirini
    Katsenios, Nikolaos
    Efthimiadou, Aspasia
    Lazarou, Erato
    Kounani, Kalliopi
    Papakonstantinou, Eleni
    Vlachakis, Dimitrios
    Kasimati, Aikaterini
    Zafeiriou, Ioannis
    Espejo-Garcia, Borja
    Fountas, Spyros
    SMART AGRICULTURAL TECHNOLOGY, 2025, 10
  • [45] Hyperspectral Imaging Technology Combined With Machine Learning for Detection of Moldy Rice
    Li Bin
    Su Cheng-tao
    Yin Hai
    Liu Yan-de
    SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43 (08) : 2391 - 2396
  • [46] Hyperspectral Imaging and Machine Learning for Huanglongbing Detection on Leaf-Symptoms
    Dong, Ruihao
    Shiraiwa, Aya
    Ichinose, Katsuya
    Pawasut, Achara
    Sreechun, Kesaraporn
    Mensin, Sumalee
    Hayashi, Takefumi
    PLANTS-BASEL, 2025, 14 (03):
  • [47] Assessing produce freshness using hyperspectral imaging and machine learning
    Logan, Riley D.
    Scherrer, Bryan
    Senecal, Jacob
    Walton, Neil S.
    Peerlinck, Amy
    Sheppard, John W.
    Shaw, Joseph A.
    JOURNAL OF APPLIED REMOTE SENSING, 2021, 15 (03)
  • [48] Mango varietal discrimination using hyperspectral imaging and machine learning
    Castro, Wilson
    Tene, Baldemar
    Castro, Jorge
    Guivin, Alex
    Ruesta, Nelson
    Avila-George, Himer
    Neural Computing and Applications, 2024, 36 (30) : 18693 - 18703
  • [49] Aflatoxin Contaminated Chili Pepper Detection by Hyperspectral Imaging and Machine Learning
    Atas, Musa
    Yardimci, Yasemin
    Temizel, Alptekin
    SENSING FOR AGRICULTURE AND FOOD QUALITY AND SAFETY III, 2011, 8027
  • [50] Detection of Early Bruises in Honey Peaches Using Shortwave Infrared Hyperspectral Imaging
    Li, Xiong
    Liu, Yande
    Yan, Yunjuan
    Wang, Guantian
    SPECTROSCOPY, 2022, 37 : 33 - +