Toward a smart health: big data analytics and IoT for real-time miscarriage prediction

被引:2
|
作者
Asri, Hiba [1 ]
Jarir, Zahi [1 ]
机构
[1] Fac Sci Semlalia, Dept Comp Sci, LISI Lab, Marrakech, Morocco
关键词
Big Data; Miscarriage prediction; Predictive analytics; K-means; Clustering; RISK; CARE; PREGNANCY; WOMEN;
D O I
10.1186/s40537-023-00704-9
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
BackgroundWe are living in an age where data is everywhere and grows up in a very speedy way. Thanks to sensors, mobile phones and social networks, we can gather a hug amount of information to understand human behavior as well as his individual life. In healthcare system, big data analytics and machine learning algorithms prove their effectiveness and efficiency in saving lives and predicting new diseases. This triggered the idea of taking advantages of those tools and algorithms to create systems that involve both doctors and patients in the treatment of disease, predict outcomes and use real-time risk factors from sensors and mobile phones.MethodsWe distinguish three types of data: data from sensors, data from mobile phones and data registered or updated by the patient in a mobile app we created. We take advantages from IoT systems such as Raspberry Pi to collect and process data coming from sensors. All data collected is sent to a NoSql Server to be then analyzed and processed in Databricks Spark. K-means centroid clustering algorithms is used to build the predictive model, create partitions and make predictions. To validate results in term of efficiency and effectiveness, we used clustering validations techniques: Random K, Silhouette and Elbow methods.ResultsThe main contribution of our work is the implementation of a new system that has the capability to be applied in several prediction disease researches using Big Data Analytics and IoT. Also, comparing to other studies in literature that use only medical or maternal risk factors from echography; our work had the advantage to use real-time risk factors (maternal and medical) gathered from sensors, react in advance and track diseases. As a case study, we create an e-monitoring real-time miscarriage prediction system to save baby's lives and help pregnant women. In fact, doctors receive the results of clustering and track theirs patient through our mobile app to react in term of miscarriage to avoid non-suitable outcomes. While pregnant women receive only advices based on their behaviors. The system uses 15 real-time risk factors and our dataset contains more than 1,000,000 JSON files. Elbow method affirm three as the optimal number of clusters and we reach 0.99 as a value of Silhouette method, which is a good sign that clusters are well separated and matched.
引用
收藏
页数:23
相关论文
共 50 条
  • [11] Real-Time Smart Safe-Return-Home Service Based on Big Data Analytics
    Ryu, Gae-A
    Lee, Jae-Won
    Jeong, Ji-Sung
    Kim, Mihye
    Yoo, Kwan-Hee
    BIG DATA APPLICATIONS AND SERVICES 2017, 2019, 770 : 197 - 209
  • [12] Fog Intelligence for Real-Time IoT Sensor Data Analytics
    Raafat, Hazem M.
    Hossain, M. Shamim
    Essa, Ehab
    Elmougy, Samir
    Tolba, Ahmed S.
    Muhammad, Ghulam
    Ghoneim, Ahmed
    IEEE ACCESS, 2017, 5 : 24062 - 24069
  • [13] IoT and Big Data Analytics for Smart Buildings: A Survey
    Daissaoui, Abdellah
    Boulmakoul, Azedine
    Karim, Lamia
    Lbath, Ahmed
    11TH INTERNATIONAL CONFERENCE ON AMBIENT SYSTEMS, NETWORKS AND TECHNOLOGIES (ANT) / THE 3RD INTERNATIONAL CONFERENCE ON EMERGING DATA AND INDUSTRY 4.0 (EDI40) / AFFILIATED WORKSHOPS, 2020, 170 : 161 - 168
  • [14] A Methodology of Real-Time Data Fusion for Localized Big Data Analytics
    Jabbar, Sohail
    Malik, Kaleem R.
    Ahmad, Mudassar
    Aldabbas, Omar
    Asif, Muhammad
    Khalid, Shehzad
    Han, Kijun
    Ahmed, Syed Hassan
    IEEE ACCESS, 2018, 6 : 24510 - 24520
  • [15] Logical big data integration and near real-time data analytics
    Silva, Bruno
    Moreira, Jose
    Costa, Rogerio Luis de C.
    DATA & KNOWLEDGE ENGINEERING, 2023, 146
  • [16] Big Data Stream Computing in Healthcare Real-Time Analytics
    Ta, Van-Dai
    Liu, Chuan-Ming
    Nkabinde, Goodwill Wandile
    PROCEEDINGS OF 2016 IEEE INTERNATIONAL CONFERENCE ON CLOUD COMPUTING AND BIG DATA ANALYSIS (ICCCBDA 2016), 2016, : 37 - 42
  • [17] A Survey on Real-time Big Data Analytics: Applications and Tools
    Yadranjiaghdam, Babak
    Pool, Nathan
    Tabrizi, Nasseh
    2016 INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE & COMPUTATIONAL INTELLIGENCE (CSCI), 2016, : 404 - 409
  • [18] Real-time monitoring of physicochemical parameters in water using big data and smart IoT sensors
    Sharma, Naresh
    Sharma, Rohit
    ENVIRONMENT DEVELOPMENT AND SUSTAINABILITY, 2024, 26 (09) : 22013 - 22060
  • [19] Proposed Model for Real-Time Anomaly Detection in Big IoT Sensor Data for Smart City
    Hasani Z.
    Krrabaj S.
    Krasniqi M.
    International Journal of Interactive Mobile Technologies, 2024, 18 (03): : 32 - 44
  • [20] An incremental approach for real-time Big Data visual analytics
    Garcia, Ignacio
    Casado, Ruben
    Bouchachia, Abdelhamid
    2016 IEEE 4TH INTERNATIONAL CONFERENCE ON FUTURE INTERNET OF THINGS AND CLOUD WORKSHOPS (FICLOUDW), 2016, : 177 - 182