Wave solutions to an integrable negative order KdV equation

被引:2
|
作者
Cai, Niping [1 ]
Qiao, Zhijun [2 ]
Zhou, Yuqian [1 ]
机构
[1] Chengdu Univ Informat Technol, Coll Appl Math, Chengdu 610225, Sichuan, Peoples R China
[2] Univ Texas Rio Grande Valley, Sch Math & Stat Sci, Edinburg, TX 78539 USA
基金
中国博士后科学基金;
关键词
Solitary wave; Pseudo-peakon; Pseudo-periodic peakon; Compacton; Bifurcation; Dynamical system; EVOLUTION-EQUATIONS; HIERARCHIES; SYMMETRIES;
D O I
10.1016/j.wavemoti.2022.103072
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
In this paper, we study the traveling wave solutions to the second representative equa-tion of the negative-order Korteweg-de Vries hierarchy. The corresponding traveling wave system is a singular planar dynamical system with a singular straight line. By using the method of dynamical systems, explicit solutions are given. But this integrable negative order Korteweg-de Vries flow has no traveling solitary wave solution. (c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] The classification of the single traveling wave solutions to the KdV equation with higher-order nonlinearity
    Yang, Xuefei
    Zhang, Kaixuan
    MODERN PHYSICS LETTERS B, 2022, 36 (06):
  • [42] TRAVELING-WAVE SOLUTIONS TO A 7TH ORDER GENERALIZED KDV EQUATION
    MA, WX
    PHYSICS LETTERS A, 1993, 180 (03) : 221 - 224
  • [43] Unveiling single soliton solutions for the (3+1)-dimensional negative order KdV–CBS equation in a long wave propagation
    Isma Ghulam Murtaza
    Nauman Raza
    Saima Arshed
    Optical and Quantum Electronics, 56
  • [44] Conservation Laws and Travelling Wave Solutions for a Negative-Order KdV-CBS Equation in 3+1 Dimensions
    Luz Gandarias, Maria
    Raza, Nauman
    SYMMETRY-BASEL, 2022, 14 (09):
  • [45] Negative Order KdV Equation with No Solitary Traveling Waves
    Rodriguez, Miguel
    Li, Jing
    Qiao, Zhijun
    MATHEMATICS, 2022, 10 (01)
  • [46] Traveling waves for an integrable higher order KdV type wave equations
    Li, Jibin
    Wu, Jianhong
    Zhu, Huaiping
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2006, 16 (08): : 2235 - 2260
  • [47] Bifurcations of traveling wave solutions for an integrable equation
    Li, Jibin
    Qiao, Zhijun
    JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (04)
  • [48] SOLITARY WAVE SOLUTIONS AND CNOIDAL WAVE SOLUTIONS TO THE COMBINED KDV AND MKDV EQUATION
    LOU, SY
    CHEN, LL
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 1994, 17 (05) : 339 - 347
  • [49] New solitary wave solutions and periodic wave solutions for the compound KdV equation
    Zhang, Weiguo
    Li, Shaowei
    Zhang, Lu
    Ning, Tongke
    CHAOS SOLITONS & FRACTALS, 2009, 39 (01) : 143 - 149
  • [50] TRAVELLING WAVE SOLUTIONS FOR THE PAINLEVE- INTEGRABLE COUPLED KDV EQUATIONS
    Li, Jibin
    Lin, Xiao-Biao
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2008,