An Algorithm of Complete Coverage Path Planning for Unmanned Surface Vehicle Based on Reinforcement Learning

被引:19
|
作者
Xing, Bowen [1 ]
Wang, Xiao [1 ,2 ]
Yang, Liu [1 ]
Liu, Zhenchong [3 ]
Wu, Qingyun [1 ]
机构
[1] Shanghai Ocean Univ, Coll Engn Sci & Technol, Shanghai 201306, Peoples R China
[2] Shanghai Invest Design & Res Inst, Shanghai 200335, Peoples R China
[3] Shanghai Zhongchuan NERC SDT Co Ltd, Shanghai 201114, Peoples R China
关键词
environment modeling; raster map; screening matrix; DQN; reward function;
D O I
10.3390/jmse11030645
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
A deep reinforcement learning method to achieve complete coverage path planning for an unmanned surface vehicle (USV) is proposed. This paper firstly models the USV and the workspace required for complete coverage. Then, for the full-coverage path planning task, this paper proposes a preprocessing method for raster maps, which can effectively delete the blank areas that are impossible to cover in the raster map. In this paper, the state matrix corresponding to the preprocessed raster map is used as the input of the deep neural network. The deep Q network (DQN) is used to train the complete coverage path planning strategy of the agent. The improvement of the selection of random actions during training is first proposed. Considering the task of complete coverage path planning, this paper replaces random actions with a set of actions toward the nearest uncovered grid. To solve the problem of the slow convergence speed of the deep reinforcement learning network in full-coverage path planning, this paper proposes an improved method of deep reinforcement learning, which superimposes the final output layer with a dangerous actions matrix to reduce the risk of selection of dangerous actions of USVs during the learning process. Finally, the designed method validates via simulation examples.
引用
下载
收藏
页数:19
相关论文
共 50 条
  • [11] Path Planning Technology of Unmanned Vehicle Based on Improved Deep Reinforcement Learning
    Zhang, Kai
    Wang, Guile
    Hu, Jinwen
    Xu, Zhao
    Guo, Chubing
    2021 PROCEEDINGS OF THE 40TH CHINESE CONTROL CONFERENCE (CCC), 2021, : 8392 - 8397
  • [12] Complete Coverage Path Planning of Autonomous Underwater Vehicle Based on GBNN Algorithm
    Daqi Zhu
    Chen Tian
    Bing Sun
    Chaomin Luo
    Journal of Intelligent & Robotic Systems, 2019, 94 : 237 - 249
  • [13] Complete Coverage Path Planning of Autonomous Underwater Vehicle Based on GBNN Algorithm
    Zhu, Daqi
    Tian, Chen
    Sun, Bing
    Luo, Chaomin
    JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS, 2019, 94 (01) : 237 - 249
  • [14] Path Planning Algorithm for Unmanned Surface Vehicle Based on Optimized Ant Colony Algorithm
    Cui, Yani
    Ren, Jia
    Zhang, Yu
    IEEJ TRANSACTIONS ON ELECTRICAL AND ELECTRONIC ENGINEERING, 2022, 17 (07) : 1027 - 1037
  • [15] Patrol path planning of unmanned surface vehicle based on A* algorithm and ant colony algorithm
    Zhang D.
    Chen W.
    Zhang H.
    Su Y.
    Huazhong Keji Daxue Xuebao (Ziran Kexue Ban)/Journal of Huazhong University of Science and Technology (Natural Science Edition), 2020, 48 (06): : 13 - 18
  • [16] Path Planning of Unmanned Surface Vehicle Based on Improved Sparrow Search Algorithm
    Liu, Guangzhong
    Zhang, Sheng
    Ma, Guojie
    Pan, Yipeng
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2023, 11 (12)
  • [17] Path planning for unmanned surface vehicle based on improved ant colony algorithm
    Sun G.-W.
    Su Y.-X.
    Gu Y.-C.
    Xie J.-R.
    Wang J.-X.
    Kongzhi yu Juece/Control and Decision, 2021, 36 (04): : 847 - 856
  • [18] Local Path Planning for Unmanned Surface Vehicle based on the Improved DWA Algorithm
    Tan, Zhikun
    Wei, Naxin
    Liu, Zhengfeng
    2022 41ST CHINESE CONTROL CONFERENCE (CCC), 2022, : 3820 - 3825
  • [19] Smoothed A* algorithm for practical unmanned surface vehicle path planning
    Song, Rui
    Liu, Yuanchang
    Bucknall, Richard
    APPLIED OCEAN RESEARCH, 2019, 83 : 9 - 20
  • [20] Unmanned Aerial Vehicle Path Planning Algorithm Based on Deep Reinforcement Learning in Large-Scale and Dynamic Environments
    Xie, Ronglei
    Meng, Zhijun
    Wang, Lifeng
    Li, Haochen
    Wang, Kaipeng
    Wu, Zhe
    IEEE Access, 2021, 9 : 24884 - 24900