Cellulose dissolution in ionic liquid from hydrogen bonding perspective: first-principles calculations

被引:10
|
作者
Lu, Xingmei [1 ]
Xu, Shujun [1 ]
Chen, Jiazhen [1 ]
Ni, Liufang [1 ,2 ]
Ma, Xiaojuan [1 ]
Cao, Shilin [1 ]
Gao, Haili [1 ]
机构
[1] Fujian Agr & Forestry Univ, Coll Mat Engn, Fuzhou 350002, Fujian, Peoples R China
[2] Fujian Univ Technol, Sch Ecol Environm & Urban Construct, Fuzhou 350002, Peoples R China
关键词
DFT; Ionic liquids; Cellulose; Hydrogen bond; DENSITY-FUNCTIONAL THEORY; ALKYL CHAIN-LENGTH; ROOM-TEMPERATURE; CELLOBIOSE; MECHANISM; ANION; PARAMETERS; CHLORIDE; SURFACE;
D O I
10.1007/s10570-023-05140-9
中图分类号
TB3 [工程材料学]; TS [轻工业、手工业、生活服务业];
学科分类号
0805 ; 080502 ; 0822 ;
摘要
Anions are always considered to explain most of the cellulose dissolution in the ionic liquid; where electron donor theory is always used to elaborate cellulose dissolution in the ionic liquids with different anions. However, the theory does not apply to ionic liquids with different alkyl chain anions. Herein, the hydrogen bond theory was proposed to further explain cellulose dissolution by density functional theory (DFT) calculations. 1-allyl-3-methylimidazole carboxylate ionic liquids with different alkyl chains including ([Amim][HCOO], [Amim][CH3COO], [Amim][CH3CH2COO], [Amim][CH3CH2CH2COO]) were investigated. The DFT results indicated that the alkyl chains of the anions directly affect the hydrogen bond and the interaction energy between the cations and anions; where the length of the hydrogen bonds between cation and anion is the most predominant factor for determining the polarity parameter beta value of the ionic liquid itself and therefore governing cellulose dissolution. Moreover, a shorter length of hydrogen bonds between the anions of ionic liquid and cellobiose referred to a better solubility of cellulose in the ionic liquids. [GRAPHICS] .
引用
收藏
页码:4181 / 4195
页数:15
相关论文
共 50 条
  • [31] First-principles calculations of iron-hydrogen reactions in silicon
    Santos, Paulo
    Coutinho, Jose
    Oberg, Sven
    JOURNAL OF APPLIED PHYSICS, 2018, 123 (24)
  • [32] Swamps of hydrogen in equiatomic FeCuCrMnMo alloys: First-principles calculations
    Ren, X. L.
    Shi, P. H.
    Zhang, W. W.
    Wu, X. Y.
    Xu, Q.
    Wang, Y. X.
    ACTA MATERIALIA, 2019, 180 : 189 - 198
  • [33] First-principles calculations of transition elements interaction with hydrogen in vanadium
    Wei, Mingliang
    Wang, Xing
    Zhang, Pengbo
    Zhao, Jijun
    Zheng, Pengfei
    Chen, Jiming
    JOURNAL OF NUCLEAR MATERIALS, 2022, 564
  • [34] Hydrogen on graphene with low amplitude ripples: First-principles calculations
    Lobzenko, Ivan
    Baimova, J.
    Krylova, K.
    CHEMICAL PHYSICS, 2020, 530
  • [35] A quantum fluid of metallic hydrogen suggested by first-principles calculations
    Stanimir A. Bonev
    Eric Schwegler
    Tadashi Ogitsu
    Giulia Galli
    Nature, 2004, 431 : 669 - 672
  • [36] Investigating behavior of hydrogen in zirconium by first-principles: From dissolution, diffusion to the interaction with vacancy
    Wang, Zi-Qi
    Li, Yu-Hao
    Li, Zhong-Zhu
    Zhou, Hong-Bo
    Lu, Guang-Hong
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 2019, 458 : 1 - 6
  • [37] First-principles calculations on the structure of hydrogen aggregates in silicon and diamond
    Martsinovich, N
    Heggie, MI
    Ewels, CP
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2003, 15 (39) : S2815 - S2824
  • [38] Effects of nitrogen on hydrogen retention in tungsten: First-principles calculations
    Wang, Sheng
    Kong, Xiang-Shan
    Wu, Xuebang
    Fang, Q. F.
    Chen, Jun-Ling
    Luo, G. -N.
    Liu, C. S.
    JOURNAL OF NUCLEAR MATERIALS, 2015, 459 : 143 - 149
  • [39] First-principles calculations of hydrogen in perfect WFe and WFeNb crystals
    Chen, L.
    Wang, Q.
    Xiong, L.
    Gong, H. R.
    SOLID STATE COMMUNICATIONS, 2017, 249 : 24 - 29
  • [40] A quantum fluid of metallic hydrogen suggested by first-principles calculations
    Bonev, SA
    Schwegler, E
    Ogitsu, T
    Galli, G
    NATURE, 2004, 431 (7009) : 669 - 672