GAM: General affordance-based manipulation for contact-rich object disentangling tasks

被引:0
|
作者
Yang, Xintong [1 ]
Wu, Jing [2 ]
Lai, Yu-Kun [2 ]
Ji, Ze [1 ]
机构
[1] Cardiff Univ, Sch Engn, Queens Bldg, Cardiff CF24 3AA, Wales
[2] Cardiff Univ, Sch Comp Sci & Informat, Abacws, Senghennydd Rd, Cardiff CF24 4AG, Wales
基金
英国工程与自然科学研究理事会;
关键词
Contact-rich manipulation; Affordance theory; Reinforcement learning; Task-oriented grasping; Grasp filter; ROBOTIC MANIPULATION;
D O I
10.1016/j.neucom.2024.127386
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Picking up an entangled object is a difficult manipulation task due to its rich contact dynamics. Most existing solutions fail to produce grasp poses to enable reliable manipulation due to the dependence on simplified assumptions for the motion policies. Grasps generated by these methods tend to drop objects or cause undesired movements of non-grasped objects. To improve such object-disentangling tasks, we propose to extend the concept of reinforcement learning (RL)-based affordance to include arbitrary action consequences and implement a general affordance-based manipulation (GAM) framework. In the GAM, we train an RL agent that uses more fine-grained actions and outperforms previous methods with a smaller chance of dropping objects and making contact with non-grasped hooks. Then, a manipulation affordance prediction (MAP) model is trained to estimate the performances of the RL agent. Finally, the manipulation affordance-based grasp filter (MAGF) selects grasp poses that afford the desired manipulation performances, showing substantial improvements in five challenging hook disentangling tasks in simulation. The experiments show (1) the limitation of TAG generators, (2) the effectiveness of filtering TAGs with predicted manipulation performances based on the general affordance theory, and (3) the importance of avoiding contact with non-grasped objects in contact-rich manipulation.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Contact-consistent visual object pose estimation for contact-rich robotic manipulation tasks
    Tian, Zhonglai
    Cheng, Hongtai
    Du, Zhenjun
    Jiang, Zongbei
    Wang, Yeping
    [J]. ASSEMBLY AUTOMATION, 2022, 42 (04) : 397 - 410
  • [2] Learning Dense Rewards for Contact-Rich Manipulation Tasks
    Wu, Zheng
    Lian, Wenzhao
    Unhelkar, Vaibhav
    Tomizuka, Masayoshi
    Schaal, Stefan
    [J]. 2021 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2021), 2021, : 6214 - 6221
  • [3] A review on reinforcement learning for contact-rich robotic manipulation tasks
    Elguea-Aguinaco, Inigo
    Serrano-Munoz, Antonio
    Chrysostomou, Dimitrios
    Inziarte-Hidalgo, Ibai
    Bogh, Simon
    Arana-Arexolaleiba, Nestor
    [J]. ROBOTICS AND COMPUTER-INTEGRATED MANUFACTURING, 2023, 81
  • [4] Residual Feedback Learning for Contact-Rich Manipulation Tasks with Uncertainty
    Ranjbar, Alireza
    Vien, Ngo Anh
    Ziesche, Hanna
    Boedecker, Joschka
    Neumann, Gerhard
    [J]. 2021 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2021, : 2383 - 2390
  • [5] Symbolic State Estimation with Predicates for Contact-Rich Manipulation Tasks
    Migimatsu, Toki
    Lian, Wenzhao
    Bohg, Jeannette
    Schaal, Stefan
    [J]. 2022 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2022), 2022, : 1702 - 1709
  • [6] Learning Tool Morphology for Contact-Rich Manipulation Tasks with Differentiable Simulation
    Li, Mengxi
    Antonova, Rika
    Sadigh, Dorsa
    Bohg, Jeannette
    [J]. 2023 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, ICRA, 2023, : 1859 - 1865
  • [7] State Estimation in Contact-Rich Manipulation
    Wirnshofer, Florian
    Schmidt, Philipp S.
    Meister, Philine
    von Wichert, Georg
    Burgard, Wolfram
    [J]. 2019 INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2019, : 3790 - 3796
  • [8] Affordance-based robot object retrieval
    Thao Nguyen
    Gopalan, Nakul
    Patel, Roma
    Corsaro, Matt
    Pavlick, Ellie
    Tellex, Stefanie
    [J]. AUTONOMOUS ROBOTS, 2022, 46 (01) : 83 - 98
  • [9] Affordance-based robot object retrieval
    Thao Nguyen
    Nakul Gopalan
    Roma Patel
    Matt Corsaro
    Ellie Pavlick
    Stefanie Tellex
    [J]. Autonomous Robots, 2022, 46 : 83 - 98
  • [10] Data-Efficient Model Learning and Prediction for Contact-Rich Manipulation Tasks
    Khader, Shahbaz Abdul
    Yin, Hang
    Falco, Pietro
    Kragic, Danica
    [J]. IEEE ROBOTICS AND AUTOMATION LETTERS, 2020, 5 (03): : 4321 - 4328