Partition and Disjoint Cycles in Digraphs

被引:0
|
作者
Song, Chunjiao [1 ]
Yan, Jin [1 ]
机构
[1] Shandong Univ, Sch Math, Jinan 250100, Peoples R China
基金
中国国家自然科学基金;
关键词
Minimum out-degree; Partition; Vertex disjoint cycles; Probability method; CONJECTURE;
D O I
10.1007/s00373-023-02631-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let D be a digraph, we use d(+) (D) to denote the minimum out-degree of D. In 2006, Alon proposed a problem stating that if there exists an integer function F(d(1), . . . , d(k)) for a digraph D such that if d(+) (D) = F(d(1), ... , d(k)), then V(D) can be partitioned into k parts V-1, ... , V-k with d(+) (D[V-i]) = d(i) for each i ? [k], here D[V-i] denotes the induced subdigraph of V-i .We prove that F(d(1), ... , d(k)) = 2(d(1) + . . . + d(k)) under the condition that the maximum in-degree is bounded and ln k/2 < min{d(1), ... , d(k)} by using Lovasz Local Lemma. Furthermore, we show that some regular digraphs, and digraphs of small order can be partitioned into k parts such that both the minimum in-degree and the minimum out-degree of the digraph induced by each part are at least d(i) for each i ? [k]. Based on the results above, we further give lower bounds of the minimum out-degree of some special class digraphs containing k vertex disjoint cycles of different lengths.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Arc-disjoint paths in expander digraphs
    Bohman, T
    Frieze, A
    [J]. SIAM JOURNAL ON COMPUTING, 2003, 32 (02) : 326 - 344
  • [42] The partition dimension of Cayley digraphs
    Fehr M.
    Gosselin S.
    Oellermann O.R.
    [J]. aequationes mathematicae, 2006, 71 (1-2) : 1 - 18
  • [43] Edge-disjoint branchings in temporal digraphs
    Campos, Victor
    Lopes, Raul
    Marino, Andrea
    Silva, Ana
    [J]. ELECTRONIC JOURNAL OF COMBINATORICS, 2021, 28 (04):
  • [44] Disjoint essential cycles
    Mohar, B
    Robertson, N
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 1996, 68 (02) : 324 - 349
  • [45] Kernel Bounds for Disjoint Cycles and Disjoint Paths
    Bodlaender, Hans L.
    Thomasse, Stephan
    Yeo, Anders
    [J]. ALGORITHMS - ESA 2009, PROCEEDINGS, 2009, 5757 : 635 - +
  • [46] Edge-Disjoint Paths in Eulerian Digraphs
    Cavallaro, Dario Giuliano
    Kawarabayashi, Ken-ichi
    Kreutzer, Stephan
    [J]. PROCEEDINGS OF THE 56TH ANNUAL ACM SYMPOSIUM ON THEORY OF COMPUTING, STOC 2024, 2024, : 704 - 715
  • [47] Arc-disjoint paths in expander digraphs
    Bohman, T
    Frieze, A
    [J]. 42ND ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS, 2001, : 558 - 567
  • [48] Arc-Disjoint Paths in Decomposable Digraphs
    Bang-Jensen, Jorgen
    Maddaloni, Alessandro
    [J]. JOURNAL OF GRAPH THEORY, 2014, 77 (02) : 89 - 110
  • [49] Disjoint directed cycles
    Alon, N
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 1996, 68 (02) : 167 - 178
  • [50] A note on disjoint cycles
    Kotrbcik, Michal
    [J]. INFORMATION PROCESSING LETTERS, 2012, 112 (04) : 135 - 137