Modeling count time series: a comparative case study

被引:0
|
作者
Maia, Gisele O. [1 ]
Franco, Glaura C. [1 ]
Santos, Thiago R. [1 ]
Camara, Ana Julia A. [2 ]
机构
[1] Univ Fed Minas Gerais UFMG, Dept Estat, Belo Horizonte, Brazil
[2] Univ Fed Espirito Santo UFES, Dept Estat, Espirito Santo, Brazil
来源
SIGMAE | 2024年 / 13卷 / 01期
关键词
Observation-driven model; Parameter-driven model; GAM-ARMA; NGSSEML; count data; DRIVEN; REGRESSION;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper presents an application for counting data, where the observation-driven and parameter -driven models are compared. To this purpose, the Generalized Additive Autoregressive Moving Average (GAM -ARMA) and Non-Gaussian State Space with Exact Marginal Likelihood (NGSSEML) models are used. Model parameters are estimated using the maximum likelihood method. The ability of the procedure to model and forecast real data is presented for the number of chronic obstructive disease (COPD) cases.
引用
下载
收藏
页码:13 / 23
页数:11
相关论文
共 50 条
  • [1] INARMA Modeling of Count Time Series
    Weiss, Christian H.
    Fled, Martin H. J. M.
    Khan, Naushad Mamode
    Sunecher, Yuvraj
    STATS, 2019, 2 (02): : 284 - 320
  • [2] State Space Modeling of Event Count Time Series
    Moontaha, Sidratul
    Arnrich, Bert
    Galka, Andreas
    ENTROPY, 2023, 25 (10)
  • [3] Time series of count data: modeling, estimation and diagnostics
    Jung, Robert C.
    Kukuk, Martin
    Liesenfeld, Roman
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2006, 51 (04) : 2350 - 2364
  • [4] Bivariate time series modeling of financial count data
    Quoreshi, A. M. M. Shahiduzzaman
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2006, 35 (07) : 1343 - 1358
  • [5] Integer-Valued GARCH Models for Count Time Series: Case Study
    Yoon, J. E.
    Hwang, S. Y.
    KOREAN JOURNAL OF APPLIED STATISTICS, 2015, 28 (01) : 115 - 122
  • [6] A comparative study of time series modeling for driving behavior towards prediction
    Hamada, Ryunosuke
    Kubo, Takatomi
    Ikeda, Kazushi
    Zhang, Zujie
    Bando, Takashi
    Egawa, Masumi
    2013 ASIA-PACIFIC SIGNAL AND INFORMATION PROCESSING ASSOCIATION ANNUAL SUMMIT AND CONFERENCE (APSIPA), 2013,
  • [7] Effective Bayesian Modeling of Groups of Related Count Time Series
    Chapados, Nicolas
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 32 (CYCLE 2), 2014, 32 : 1395 - 1403
  • [8] Bayesian modeling for overdispersed event-count time series
    Fukumoto K.
    Beger A.
    Moore W.H.
    Behaviormetrika, 2019, 46 (2) : 435 - 452
  • [9] Dynamic modeling for persistent event-count time series
    Brandt, PT
    Williams, JT
    Fordham, BO
    Pollins, B
    AMERICAN JOURNAL OF POLITICAL SCIENCE, 2000, 44 (04) : 823 - 843
  • [10] COMPARATIVE STUDY OF TIME SERIES MODELING METHODS FOR REACTOR NOISE ANALYSIS.
    Kitamura, Masaharu
    Shigeno, Kei
    Sugiyama, Kazusuke
    1978, 43 (02): : 391 - 407