Infinitesimal Sliding Bendings of Compact Surfaces and Euler's Conjecture

被引:0
|
作者
Sabitov, I. Kh. [1 ]
机构
[1] Lomonosov Moscow State Univ, Fac Mech & Math, Moscow, Russia
关键词
Euler's conjecture; sliding bending; infinitesimal bending; analytic bending; 514.772.35;
D O I
10.1134/S0037446623050130
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give some historical information about Euler's conjecture on the rigidityof compact surfaces as well as the available results related to its proof.We thoroughly describe an approach tothe conjecture by infinitesimal bendingsin the case when the deformation of the surface is considered in the class ofsliding bendings. We prove that Euler's conjecture is true for the surfaces ofrevolution of genus 0 in the class of sliding bendings.
引用
收藏
页码:1213 / 1228
页数:16
相关论文
共 50 条
  • [31] On Thurston's Euler class-one conjecture
    Yazdi, Mehdi
    ACTA MATHEMATICA, 2020, 225 (02) : 313 - 368
  • [32] Zariski's conjecture and Euler-Chow series
    Chen, Xi
    Javier Elizondo, E.
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2020, 26 (03): : 921 - 946
  • [33] Energy conservation and Onsager's conjecture for the Euler equations
    Cheskidov, A.
    Constantin, P.
    Friedlander, S.
    Shvydkoy, R.
    NONLINEARITY, 2008, 21 (06) : 1233 - 1252
  • [34] Infinitesimal parameter spaces of locally trivial deformations of compact complex surfaces with ordinary singularities
    Tsuboi, S
    FINITE OR INFINITE DIMENSIONAL COMPLEX ANALYSIS, 2000, 214 : 523 - 532
  • [35] Onsager's Conjecture for the Incompressible Euler Equations in Bounded Domains
    Bardos, Claude
    Titi, Edriss S.
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2018, 228 (01) : 197 - 207
  • [36] Onsager’s Conjecture for the Incompressible Euler Equations in Bounded Domains
    Claude Bardos
    Edriss S. Titi
    Archive for Rational Mechanics and Analysis, 2018, 228 : 197 - 207
  • [37] BLOCH'S CONJECTURE FOR CATANESE AND BARLOW SURFACES
    Voisin, Claire
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2014, 97 (01) : 149 - 175
  • [38] Vojta's main conjecture for blowup surfaces
    McKinnon, D
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 131 (01) : 1 - 12
  • [39] Xiao's conjecture for general fibred surfaces
    Angel Barja, Miguel
    Gonzalez-Alonso, Victor
    Carlos Naranjo, Juan
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2018, 739 : 297 - 308
  • [40] A PROOF OF SORENSEN'S CONJECTURE ON HERMITIAN SURFACES
    Beelen, Peter
    Datta, Mrinmoy
    Homma, Masaaki
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 149 (04) : 1431 - 1441