Neural superstatistics for Bayesian estimation of dynamic cognitive models

被引:7
|
作者
Schumacher, Lukas [1 ]
Buerkner, Paul-Christian [2 ]
Voss, Andreas [1 ]
Koethe, Ullrich [3 ]
Radev, Stefan T. [4 ]
机构
[1] Heidelberg Univ, Inst Psychol, Heidelberg, Germany
[2] TU Dortmund Univ, Dept Stat, Dortmund, Germany
[3] Heidelberg Univ, Comp Vis & Learning Lab, Heidelberg, Germany
[4] Heidelberg Univ, Cluster Excellence STRUCT, Heidelberg, Germany
关键词
DIFFUSION-MODEL; MEMORY; TIMES;
D O I
10.1038/s41598-023-40278-3
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Mathematical models of cognition are often memoryless and ignore potential fluctuations of their parameters. However, human cognition is inherently dynamic. Thus, we propose to augment mechanistic cognitive models with a temporal dimension and estimate the resulting dynamics from a superstatistics perspective. Such a model entails a hierarchy between a low-level observation model and a high-level transition model. The observation model describes the local behavior of a system, and the transition model specifies how the parameters of the observation model evolve over time. To overcome the estimation challenges resulting from the complexity of superstatistical models, we develop and validate a simulation-based deep learning method for Bayesian inference, which can recover both time-varying and time-invariant parameters. We first benchmark our method against two existing frameworks capable of estimating time-varying parameters. We then apply our method to fit a dynamic version of the diffusion decision model to long time series of human response times data. Our results show that the deep learning approach is very efficient in capturing the temporal dynamics of the model. Furthermore, we show that the erroneous assumption of static or homogeneous parameters will hide important temporal information.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Using Bayesian hierarchical parameter estimation to assess the generalizability of cognitive models of choice
    Scheibehenne, Benjamin
    Pachur, Thorsten
    PSYCHONOMIC BULLETIN & REVIEW, 2015, 22 (02) : 391 - 407
  • [22] Using Bayesian hierarchical parameter estimation to assess the generalizability of cognitive models of choice
    Benjamin Scheibehenne
    Thorsten Pachur
    Psychonomic Bulletin & Review, 2015, 22 : 391 - 407
  • [23] Troubleshooting Bayesian Cognitive Models
    Baribault, Beth
    Collins, Anne G. E.
    PSYCHOLOGICAL METHODS, 2025, 30 (01) : 128 - 154
  • [24] Bayesian Dynamic System Estimation
    Ninness, Brett
    Tran, Khoa T.
    Kellett, Christopher M.
    2014 IEEE 53RD ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2014, : 1780 - 1785
  • [25] A pathway from Bayesian statistical analysis to superstatistics
    Mathai, A. M.
    Haubold, H. J.
    APPLIED MATHEMATICS AND COMPUTATION, 2011, 218 (03) : 799 - 804
  • [26] Bayesian Dynamic Density Estimation
    Rodriguez, Abel
    ter Horst, Enrique
    BAYESIAN ANALYSIS, 2008, 3 (02): : 339 - 365
  • [27] Bayesian estimation of DSGE models
    Kriwoluzky, Alexander
    JOURNAL OF ECONOMICS, 2017, 120 (01) : 91 - 93
  • [28] A practitioner's guide to Bayesian estimation of discrete choice dynamic programming models
    Ching, Andrew T.
    Imai, Susumu
    Ishihara, Masakazu
    Jain, Neelam
    QME-QUANTITATIVE MARKETING AND ECONOMICS, 2012, 10 (02): : 151 - 196
  • [29] A practitioner’s guide to Bayesian estimation of discrete choice dynamic programming models
    Andrew T. Ching
    Susumu Imai
    Masakazu Ishihara
    Neelam Jain
    Quantitative Marketing and Economics, 2012, 10 : 151 - 196
  • [30] Bayesian estimation and model comparison for linear dynamic panel models with missing values
    Assmann, Christian
    Preising, Marcel
    AUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICS, 2020, 62 (04) : 536 - 557