Index calculus algorithm for non-planar curves

被引:0
|
作者
Oyono, Roger [1 ]
Theriault, Nicolas [2 ]
机构
[1] Univ Polynesie Francaise, Equipe GAATI, BP 6570, F-98702 Faaa, Tahiti, France
[2] Univ Santiago Chile, Dept Matemat & Ciencia Comp, Estn Cent, Sophoras 173, Santiago, Chile
关键词
Algebraic curves; Discrete log problem; Index calculus; HYPERELLIPTIC CURVES; JACOBIANS; ATTACK;
D O I
10.1016/j.ffa.2023.102227
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we develop a variation of the index calculus algorithm using non-planar models of non-hyperelliptic curves of genus g. Using canonical model of degree 2g- 2in the projective space of dimension g- 1, intersections with hyperplanes and following similar ideas to those of Diem (who used intersections with lines on planar models), we obtain an upper bound of O (q(2- 2/g-1+ epsilon)) for the computation of discrete logarithms for all non-hyperelliptic curves of genus gdefined over the finite field F-q. This asymptotic cost is essentially the same as Diem's, but our algorithm offers several advantages over Diem's, including a constant speed-up. (c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页数:36
相关论文
共 50 条
  • [31] Multilevel fast physical optics algorithm for radiation from non-planar apertures
    Boag, A
    Letrou, C
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2005, 53 (06) : 2064 - 2072
  • [32] Oxide mediated epitaxy on planar and non-planar Si
    Tung, RT
    Howard, DJ
    Ohmi, S
    Caymax, M
    Maex, K
    ADVANCED INTERCONNECTS AND CONTACT MATERIALS AND PROCESSES FOR FUTURE INTEGRATED CIRCUITS, 1998, 514 : 427 - 432
  • [33] ON PLANAR AND NON-PLANAR ISOCHRONOUS SYSTEMS AND POISSON STRUCTURES
    Guha, Partha
    Choudhury, A. Ghose
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2010, 7 (07) : 1115 - 1131
  • [34] A Planar Calculus for Infinite Index Subfactors
    Penneys, David
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2013, 319 (03) : 595 - 648
  • [35] A Planar Calculus for Infinite Index Subfactors
    David Penneys
    Communications in Mathematical Physics, 2013, 319 : 595 - 648
  • [36] PHYSICAL ADSORPTION FOR NON-PLANAR GEOMETRIES
    COLE, MW
    SCHMEITS, M
    SURFACE SCIENCE, 1978, 75 (04) : 529 - 537
  • [37] Counting over non-planar graphs
    Zecchina, R
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2001, 302 (1-4) : 100 - 109
  • [38] Non-planar on-shell diagrams
    Sebastián Franco
    Daniele Galloni
    Brenda Penante
    Congkao Wen
    Journal of High Energy Physics, 2015
  • [39] Non-planar string networks on tori
    Kumar, A
    JOURNAL OF HIGH ENERGY PHYSICS, 2000, (03):
  • [40] Non-planar ABJ theory and parity
    Caputa, Pawel
    Kristjansen, Charlotte
    Zoubos, Konstantinos
    PHYSICS LETTERS B, 2009, 677 (3-4) : 197 - 202