Evaluation of global teleconnections in CMIP6 climate projections using complex networks

被引:14
|
作者
Dalelane, Clementine [1 ]
Winderlich, Kristina [1 ]
Walter, Andreas [1 ]
机构
[1] Deutsch Wetterdienst, Frankfurter Str 135, D-63067 Offenbach, Germany
关键词
EARTH SYSTEM MODEL; LEVEL PRESSURE TRENDS; DISTANCE CORRELATION; REGIONAL CLIMATE; VARIABILITY; VERSION; ATTRIBUTION; REANALYSIS; DEPENDENCE; PATTERNS;
D O I
10.5194/esd-14-17-2023
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
In climatological research, the evaluation of climate models is one of the central research subjects. As an expression of large-scale dynamical processes, global teleconnections play a major role in interannual to decadal climate variability. Their realistic representation is an indispensable requirement for the simulation of climate change, both natural and anthropogenic. Therefore, the evaluation of global teleconnections is of utmost importance when assessing the physical plausibility of climate projections. We present an application of the graph-theoretical analysis tool delta-MAPS, which constructs complex networks on the basis of spatio-temporal gridded data sets, here sea surface temperature and geopotential height at 500 hPa. Complex networks complement more traditional methods in the analysis of climate variability, like the classification of circulation regimes or empirical orthogonal functions, assuming a new non-linear perspective. While doing so, a number of technical tools and metrics, borrowed from different fields of data science, are implemented into the delta-MAPS framework in order to overcome specific challenges posed by our target problem. Those are trend empirical orthogonal functions (EOFs), distance correlation and distance multicorrelation, and the structural similarity index. delta-MAPS is a two-stage algorithm. In the first place, it assembles grid cells with highly coherent temporal evolution into so-called domains. In a second step, the teleconnections between the domains are inferred by means of the non-linear distance correlation. We construct 2 unipartite and 1 bipartite network for 22 historical CMIP6 climate projections and 2 century-long coupled reanalyses (CERA-20C and 20CRv3). Potential non-stationarity is taken into account by the use of moving time windows. The networks derived from projection data are compared to those from reanalyses. Our results indicate that no single climate projection outperforms all others in every aspect of the evaluation. But there are indeed models which tend to perform better/worse in many aspects. Differences in model performance are generally low within the geopotential height unipartite networks but higher in sea surface temperature and most pronounced in the bipartite network representing the interaction between ocean and atmosphere.
引用
收藏
页码:17 / 37
页数:21
相关论文
共 50 条
  • [41] The global energy balance as represented in CMIP6 climate models
    Martin Wild
    Climate Dynamics, 2020, 55 : 553 - 577
  • [42] Global climate response to idealized deforestation in CMIP6 models
    Boysen, Lena R.
    Brovkin, Victor
    Pongratz, Julia
    Lawrence, David M.
    Lawrence, Peter
    Vuichard, Nicolas
    Peylin, Philippe
    Liddicoat, Spencer
    Hajima, Tomohiro
    Zhang, Yanwu
    Rocher, Matthias
    Delire, Christine
    Seferian, Roland
    Arora, Vivek K.
    Nieradzik, Lars
    Anthoni, Peter
    Thiery, Wim
    Lague, Marysa M.
    Lawrence, Deborah
    Lo, Min-Hui
    BIOGEOSCIENCES, 2020, 17 (22) : 5615 - 5638
  • [43] Evaluation of global terrestrial evapotranspiration in CMIP6 models
    Wang, Zhizhen
    Zhan, Chesheng
    Ning, Like
    Guo, Hai
    THEORETICAL AND APPLIED CLIMATOLOGY, 2021, 143 (1-2) : 521 - 531
  • [44] Evaluation of global terrestrial evapotranspiration in CMIP6 models
    Zhizhen Wang
    Chesheng Zhan
    Like Ning
    Hai Guo
    Theoretical and Applied Climatology, 2021, 143 : 521 - 531
  • [45] Wind energy resource over Europe under CMIP6 future climate projections: What changes from CMIP5 to CMIP6
    Carvalho, D.
    Rocha, A.
    Costoya, X.
    DeCastro, M.
    Gomez-Gesteira, M.
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2021, 151
  • [46] The global energy balance as represented in CMIP6 climate models
    Wild, Martin
    CLIMATE DYNAMICS, 2020, 55 (3-4) : 553 - 577
  • [47] Performance evaluation of CMIP6 global climate models for selecting models for climate projection over Nigeria
    Shiru, Mohammed Sanusi
    Chung, Eun-Sung
    THEORETICAL AND APPLIED CLIMATOLOGY, 2021, 146 (1-2) : 599 - 615
  • [48] Evaluation of historical CMIP6 model simulations and future climate change projections in the Baro River Basin
    Gebisa, Bekele T. T.
    Dibaba, Wakjira Takala
    Kabeta, Alemayehu
    JOURNAL OF WATER AND CLIMATE CHANGE, 2023, 14 (08) : 2680 - 2705
  • [49] Performance evaluation of CMIP6 global climate models for selecting models for climate projection over Nigeria
    Mohammed Sanusi Shiru
    Eun-Sung Chung
    Theoretical and Applied Climatology, 2021, 146 : 599 - 615
  • [50] Hydrological Projections under CMIP5 and CMIP6
    Wu, Yi
    Miao, Chiyuan
    Slater, Louise
    Fan, Xuewei
    Chai, Yuanfang
    Sorooshian, Soroosh
    BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY, 2024, 105 (01) : E2374 - E2389