Molecular design of a metal-organic framework material rich in fluorine as an interface layer for high-performance solid-state Li metal batteries

被引:69
|
作者
Wang, Tianyuan [1 ]
Zhang, Xinling [1 ]
Yuan, Ning [1 ]
Sun, Chunwen [1 ]
机构
[1] China Univ Min & Technol Beijing, Sch Chem & Environm Engn, Beijing 100083, Peoples R China
基金
中国国家自然科学基金;
关键词
Solid-state batteries; Solid-state electrolyte; artificial SEI layer; Fluorination; MOFs; LITHIUM-METAL; POLYMER ELECTROLYTES; ENERGY; CHEMISTRY; MECHANISM;
D O I
10.1016/j.cej.2022.138819
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Unstable electrolyte/electrode interface and uncontrolled Li dendrite growth hinder the large-scale commercial application of Li metal batteries. In this work, an artificial interfacial layer is developed to suppress the dendrite formation and the parasitic reactions between Li metal anode and electrolyte by the rational molecular design of a metal-organic framework material rich in fluorine (UiO-66(F)). The intrinsic nanochannels in UiO-66(F) promote the decomposition of lithium salts and limit the movement of anions. Moreover, the in situ formed LiF inhibits the Li dendrite growth. The composite electrolyte with the UiO-66(F) interfacial layer exhibits a wide electrochemical window (5.13 V vs Li/Li+), high ionic conductivity (4.9 x 10(-4) S cm(-1)), and ionic transference number (0.51) at room temperature. XPS results demonstrate that the in situ formed solid-electrolyte interface (SEI) is attributed to the active F groups in UiO-66(F). The symmetric cell with the optimized interfacial layer achieves excellent cycling performance over 2200 h at 0.2 mA cm(-2). In addition, the assembled full cell LiFePO4||Li also exhibits a capacity retention rate of 90.71 % after 960 cycles at 0.5 C. Even at higher rate of 2 C, it still exhibits a high discharge capacity of 139.6 mAh g(-1). This molecular design strategy for interfacial layer show great promise for practical applications of Li metal batteries.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Stable Li metal anode with protected interface for high-performance Li metal batteries
    Wang, Qian
    Yang, Chenkai
    Yang, Jijin
    Wu, Kai
    Qi, Liya
    Tang, Hui
    Zhang, Zhenyu
    Liu, Wen
    Zhou, Henghui
    ENERGY STORAGE MATERIALS, 2018, 15 : 249 - 256
  • [22] Stabilizing the LAGP/Li interface and in situ visualizing the interfacial structure evolution for high-performance solid-state lithium metal batteries
    Li, Jin
    Chen, Junjie
    Xu, Xiaosa
    Sun, Jing
    Huang, Baoling
    Zhao, Tianshou
    ENERGY & ENVIRONMENTAL SCIENCE, 2024, 17 (15) : 5521 - 5531
  • [23] Metal-Organic Framework Glass as a Functional Filler Enables Enhanced Performance of Solid-State Polymer Electrolytes for Lithium Metal Batteries
    Ding, Junwei
    Du, Tao
    Thomsen, Emil H.
    Andresen, David
    Fischer, Mathias R.
    Moller, Anders K.
    Petersen, Andreas R.
    Pedersen, Andreas K.
    Jensen, Lars R.
    Wang, Shiwen
    Smedskjaer, Morten M.
    ADVANCED SCIENCE, 2024, 11 (10)
  • [24] Dendrite-free Li Anode Enabled by a Metal-Organic Framework-Modified Solid Polymer Electrolyte for High-Performance Lithium Metal Batteries
    Shang, Wenyan
    Chen, Yubing
    Han, Jialun
    Ouyang, Ping
    Fang, Chenxin
    Du, Jie
    ACS APPLIED ENERGY MATERIALS, 2020, 3 (12) : 12351 - 12359
  • [25] Asymmetric ionogel electrolyte with an ultrathin metal-organic framework layer for lithium dendrite inhibition in solid-state lithium-metal batteries
    Li, Fanggang
    Zhou, Hu
    Meng, Chunfeng
    Xue, Chunxiong
    Li, Xiaogang
    Shen, Yingzhong
    Tao, Xian
    Liu, Haijiang
    Gao, Qiying
    Yuan, Aihua
    JOURNAL OF POWER SOURCES, 2024, 606
  • [26] Minimizing surface defects for high-performance garnet-based solid-state Li metal batteries
    Ji, Chuang
    Zhou, Shengmin
    Cai, Lan
    Yuan, Yingyi
    Liu, Xueming
    Huang, Pengru
    Xiong, Xunhui
    CHEMICAL ENGINEERING JOURNAL, 2025, 506
  • [27] Development of High-performance Aqueous Zinc Batteries Based on Metal-organic Framework
    Jeon, Eun Chan
    Song, Chi Keung
    Cho, Yang Hyun
    Song, Woo-Jin
    POLYMER-KOREA, 2024, 48 (05) : 512 - 517
  • [28] Rational design of ultrathin composite solid-state electrolyte for high-performance lithium metal batteries
    Wang, Bingyao
    Wang, Guoxu
    He, Pingge
    Fan, Li-Zhen
    JOURNAL OF MEMBRANE SCIENCE, 2022, 642
  • [29] Characterization of the structure and chemistry of the solid–electrolyte interface by cryo-EM leads to high-performance solid-state Li-metal batteries
    Ruoqian Lin
    Yubin He
    Chunyang Wang
    Peichao Zou
    Enyuan Hu
    Xiao-Qing Yang
    Kang Xu
    Huolin L. Xin
    Nature Nanotechnology, 2022, 17 : 768 - 776
  • [30] Development of metal-organic framework materials as solid-state polymer electrolytes for lithium-metal batteries: A review
    Kexin, Wang
    Zhang, Xu
    Hao, Zhongkai
    FUNCTIONAL MATERIALS LETTERS, 2023, 16 (03N04)