Enabling Bitwise Reproducibility for the Unstructured Computational Motif

被引:0
|
作者
Siklosi, Balint [1 ]
Mudalige, Gihan R. [2 ]
Reguly, Istvan Z. [1 ]
机构
[1] Pazmany Peter Catholic Univ, Fac Informat Technol & Bion, H-1088 Budapest, Hungary
[2] Univ Warwick, Dept Comp Sci, Coventry CV4 7AL, England
来源
APPLIED SCIENCES-BASEL | 2024年 / 14卷 / 02期
关键词
floating-point; bitwise reproducibility; unstructured-mesh computation; DSL; CPU; GPU; MPI; NUMERICAL REPRODUCIBILITY; POINT;
D O I
10.3390/app14020639
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In this paper we identify the causes of numerical non-reproducibility in the unstructured mesh computational motif, a class of algorithms commonly used for the solution of PDEs. We introduce a number of parallel and distributed algorithms to address nondeterminism in the order of floating-point computations, in particular, a new graph coloring scheme that produces identical coloring results regardless of how many parts the graph is partitioned to. We implement these in the OP2 domain specific language (DSL) and show how it can be automatically deployed to any application that uses OP2 without user intervention. We contrast differences in results without reproducibility and then demonstrate how bitwise reproducibility can be gained using our methods on a variety of applications including a production CFD application used at Rolls-Royce. We evaluate the performance and overheads of enforcing bitwise reproducibility on a cluster of CPUs and GPUs.
引用
收藏
页数:21
相关论文
共 50 条
  • [31] Enabling Product Comparisons on Unstructured Information Using Ontology Matching
    Walther, Maximilian
    Jaeckel, Niels
    Schuster, Daniel
    Schill, Alexander
    ADVANCES IN INTELLIGENT WEB MASTERING 3, 2011, 86 : 183 - 193
  • [32] COMPUTATIONAL RESULTS FOR PARALLEL UNSTRUCTURED MESH COMPUTATIONS
    JONES, MT
    PLASSMANN, PE
    COMPUTING SYSTEMS IN ENGINEERING, 1994, 5 (4-6): : 297 - 309
  • [33] YAMP: a containerized workflow enabling reproducibility in metagenomics research
    Visconti, Alessia
    Martin, Tiphaine C.
    Falchi, Mario
    GIGASCIENCE, 2018, 7 (07):
  • [34] Mining Unstructured Data via Computational Intelligence
    Kuri-Morales, Angel
    ADVANCES IN ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING, MICAI 2015, PT I, 2015, 9413 : 518 - 529
  • [35] Computational modelling of secondary flow on unstructured grids
    Nabi, M.
    Ottevanger, W.
    Giri, S.
    RIVER SEDIMENTATION, 2017, : 148 - 148
  • [36] Analysis of computational approaches for motif discovery
    Li, Nan
    Tompa, Martin
    ALGORITHMS FOR MOLECULAR BIOLOGY, 2006, 1 (1)
  • [37] Improved benchmarks for computational motif discovery
    Sandve, Geir Kjetil
    Abul, Osman
    Walseng, Vegard
    Drablos, Finn
    BMC BIOINFORMATICS, 2007, 8 (1)
  • [38] RNA motif discovery: a computational overview
    Achar, Avinash
    Saetrom, Pal
    BIOLOGY DIRECT, 2015, 10
  • [39] Improved benchmarks for computational motif discovery
    Geir Kjetil Sandve
    Osman Abul
    Vegard Walseng
    Finn Drabløs
    BMC Bioinformatics, 8
  • [40] The critical need to foster computational reproducibility
    Reinecke, Robert
    Trautmann, Tim
    Wagener, Thorsten
    Schüler, Katja
    Environmental Research Letters, 2022, 17 (04)