ON OSCILLATORY INTEGRALS WITH HOLDER PHASES

被引:0
|
作者
Leclerc, Gaetan [1 ]
机构
[1] Inst Math Jussieu Paris Rive Gauche, Paris, France
关键词
Expanding map; harmonic analysis; measure of maximal entropy; sum-product phenomenon; nonlinearity; TRANSFORMS;
D O I
10.3934/dcds.2023103
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We exhibit a family of autosimilar Holder maps that satisfies a "fractal" version of the Van Der Corput Lemma, despite not being absolutely continuous. Those maps are related to the measure of maximal entropy for some expanding dynamics on the circle. This result is a direct consequence of a recent work of Sahlsten and Steven (Amer. J. Math), which is based on a powerful theorem of Bourgain known as a "sum-product phenomenon" estimate. We give a substantially simpler proof of this fact in our particular context, using an elementary method inspired from Bourgain and Dyatlov's earlier work (GAFA) to check the "non-concentration estimates" that are needed to apply the sum-product phenomenon. This method allows us to gain additional control over the decay rate.
引用
收藏
页码:263 / 280
页数:18
相关论文
共 50 条
  • [31] OSCILLATORY INTEGRALS AND MULTIPLIERS ON FLP
    HORMANDER, L
    ARKIV FOR MATEMATIK, 1973, 11 (01): : 1 - 11
  • [32] ON THE AVERAGE OPERATORS, OSCILLATORY INTEGRALS, SINGULAR INTEGRALS AND THEIR APPLICATIONS
    Shi, Shaoguang
    Fu, Zunwei
    Wu, Qingyan
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2024, 14 (01): : 334 - 378
  • [33] Shifted GMRES for oscillatory integrals
    Olver, Sheehan
    NUMERISCHE MATHEMATIK, 2010, 114 (04) : 607 - 628
  • [34] Oscillatory integrals and fractal dimension
    Rolin, Jean-Philippe
    Vlah, Domagoj
    Zupanovic, Vesna
    BULLETIN DES SCIENCES MATHEMATIQUES, 2021, 168
  • [35] Experimental computation with oscillatory integrals
    Bailey, David H.
    Borwein, Jonathan M.
    GEMS IN EXPERIMENTAL MATHEMATICS, 2010, 517 : 25 - +
  • [36] EVALUATION OF INTEGRALS WITH OSCILLATORY INTEGRANDS
    PANTIS, G
    JOURNAL OF COMPUTATIONAL PHYSICS, 1975, 17 (02) : 229 - 233
  • [37] MORE ON THE CALCULATION OF OSCILLATORY INTEGRALS
    FETTIS, HE
    PEXTON, RL
    JOURNAL OF COMPUTATIONAL PHYSICS, 1982, 47 (03) : 473 - 476
  • [38] ON SOME STOCHASTIC OSCILLATORY INTEGRALS
    MALLIAVIN, P
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1982, 295 (03): : 295 - 300
  • [39] CONTOUR INTEGRATION AND OSCILLATORY INTEGRALS
    SIMON, AH
    COMMUNICATIONS OF THE ACM, 1960, 3 (07) : 398 - 398
  • [40] Shifted GMRES for oscillatory integrals
    Sheehan Olver
    Numerische Mathematik, 2010, 114 : 607 - 628