Effect of water and protic solvents on polysaccharide-based column efficiency

被引:1
|
作者
Pereira, Alberto dos Santos [1 ,2 ]
机构
[1] Paraza Pharm Inc, Dept Anlyt Chem, St Laurent, PQ, Canada
[2] Paraza Pharm Inc, 2525 Ave Marie Curie, St Laurent, PQ H4S2E1, Canada
关键词
aqueous mobile phase; chiral polysaccharide stationary phases; mass transfer; protic solvents; CHIRAL STATIONARY PHASES; PERFORMANCE LIQUID-CHROMATOGRAPHY; HYDROPHILIC INTERACTION CHROMATOGRAPHY; SUPERCRITICAL-FLUID CHROMATOGRAPHY; SEPARATION; ENANTIOMERS; RESOLUTION; ETHANOL; IMPACT;
D O I
10.1002/jssc.202300538
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
In the present study, polysaccharide-based columns were used to evaluate the efficiency of columns in response to the introduction of water and protic solvents (methanol and ethanol) into the mobile phase, replacing acetonitrile. While increasing water content frequently enhances enantiomer resolution, the inclusion of water, particularly when combined with methanol and ethanol in the mobile phase, has an adverse impact on mass transfer, thus influencing the column plate height. These effects are more pronounced with ethanol, and in many cases, van Deemter plots exhibit the absence of a minimum point optimal in the explored range. Consequently, acetonitrile and its water mixtures are the preferred choices to mitigate these effects for situations in which the chiral column is operated at a relatively high flow rate (> 1 mL/min in a 4.6 mm column).
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Enzymatic synthesis of polysaccharide-based copolymers
    Grimaud, F.
    Faucard, P.
    Tarquis, L.
    Pizzut-Serin, S.
    Roblin, P.
    Morel, S.
    Le Gall, S.
    Falourd, X.
    Rolland-Sabate, A.
    Lourdin, D.
    Moulis, C.
    Remaud-Simeon, M.
    Potocki-Veronese, G.
    GREEN CHEMISTRY, 2018, 20 (17) : 4012 - 4022
  • [22] Polysaccharide-based nanocomplexes for gene delivery
    Xu, Fu-Jian
    NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE, 2016, 12 (02) : 465 - 465
  • [23] Polysaccharide-based natural and synthetic nanocomposites
    Bogdanova, O. I.
    Chvalun, S. N.
    POLYMER SCIENCE SERIES A, 2016, 58 (05) : 629 - 658
  • [24] Polysaccharide-Based Conjugates for Biomedical Applications
    Basu, Arijit
    Kunduru, Konda Reddy
    Abtew, Ester
    Domb, Abraham J.
    BIOCONJUGATE CHEMISTRY, 2015, 26 (08) : 1396 - 1412
  • [25] Characterization of Composite Polysaccharide-Based Scaffolds
    Turco, G.
    Bellomo, F.
    Marsich, E.
    Semeraro, S.
    Donati, I.
    Scarpa, T.
    Travan, A.
    Brun, F.
    Accardo, A.
    Schena, G.
    Paoletti, S.
    TISSUE ENGINEERING PART A, 2009, 15 (05) : O23 - O23
  • [26] Ultrafiltration for purification of polysaccharide-based vaccines
    Hadidi, Mahsa
    Buckley, John
    Zydney, Andrew
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 251
  • [27] Polysaccharide-based gold nanomaterials: Synthesis mechanism, polysaccharide structure-effect, and anticancer activity
    Liu, Haoqiang
    Zhang, Minwei
    Meng, Fanxing
    Su, Chenyi
    Li, Jinyao
    CARBOHYDRATE POLYMERS, 2023, 321
  • [28] Polysaccharide-based nanoparticles for theranostic nanomedicine
    Swierczewska, M.
    Han, H. S.
    Kim, K.
    Park, J. H.
    Lee, S.
    ADVANCED DRUG DELIVERY REVIEWS, 2016, 99 : 70 - 84
  • [29] Stereochemical study on planar-chiral cyclic molecules using polysaccharide-based column chromatography
    Igawa, Kazunobu
    Uehara, Kazuhiro
    Kawasaki, Yuuya
    Tomooka, Katsuhiko
    CHIRALITY, 2022, 34 (06) : 824 - 832
  • [30] Polysaccharide-based natural and synthetic nanocomposites
    O. I. Bogdanova
    S. N. Chvalun
    Polymer Science, Series A, 2016, 58 : 629 - 658