How Well Can Machine Learning Predict Late Seizures after Intracerebral Hemorrhages? Evidence from Real-World Data

被引:0
|
作者
Lekoubou, Alain [1 ]
Petucci, Justin [1 ]
Katoch, Avinsh [1 ]
Honavar, Vasant [1 ]
机构
[1] Penn State Univ, Hershey, PA USA
关键词
D O I
暂无
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
M216
引用
收藏
页码:S128 / S128
页数:1
相关论文
共 50 条
  • [41] Applying Contemporary Machine Learning Approaches to Nutrition Care Real-World Evidence: Findings From the National Quality Improvement Data Set
    Maduri, Chandramouli
    Hsueh, Pei-Yun Sabrina
    Li, Zhiguo
    Chen, Ching-Hua
    Papoutsakis, Constantina
    JOURNAL OF THE ACADEMY OF NUTRITION AND DIETETICS, 2021, 121 (12) : 2549 - +
  • [42] Imbal-OL: Online Machine Learning from Imbalanced Data Streams in Real-world IoT
    Sudharsan, Bharath
    Breslin, John G.
    Ali, Muhammad Intizar
    2021 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2021, : 4974 - 4978
  • [43] Machine learning in a real-world PFO study: analysis of data from multi-centers in China
    Dongling Luo
    Ziyang Yang
    Gangcheng Zhang
    Qunshan Shen
    Hongwei Zhang
    Junxing Lai
    Hui Hu
    Jianxin He
    Shulin Wu
    Caojin Zhang
    BMC Medical Informatics and Decision Making, 22
  • [44] Intelligent diagnosis of Kawasaki disease from real-world data using interpretable machine learning models
    Duan, Yifan
    Wang, Ruiqi
    Huang, Zhilin
    Chen, Haoran
    Tang, Mingkun
    Zhou, Jiayin
    Hu, Zhengyong
    Hu, Wanfei
    Chen, Zhenli
    Qian, Qing
    Wang, Haolin
    HELLENIC JOURNAL OF CARDIOLOGY, 2025, 81 : 38 - 48
  • [45] Machine learning in a real-world PFO study: analysis of data from multi-centers in China
    Luo, Dongling
    Yang, Ziyang
    Zhang, Gangcheng
    Shen, Qunshan
    Zhang, Hongwei
    Lai, Junxing
    Hu, Hui
    He, Jianxin
    Wu, Shulin
    Zhang, Caojin
    BMC MEDICAL INFORMATICS AND DECISION MAKING, 2022, 22 (01)
  • [46] ASH Research Collaborative: a real-world data infrastructure to support real-world evidence development and learning healthcare systems in hematology
    Wood, William A.
    Marks, Peter
    Plovnick, Robert M.
    Hewitt, Kathleen
    Neuberg, Donna S.
    Walters, Sam
    Dolan, Brendan K.
    Tucker, Emily A.
    Abrams, Charles S.
    Thompson, Alexis A.
    Anderson, Kenneth C.
    Kluetz, Paul
    Farrell, Ann
    Rivera, Donna
    Gertzog, Matthew
    Pappas, Gregory
    BLOOD ADVANCES, 2021, 5 (23) : 5429 - 5438
  • [47] Machine learning approach to identify malaria risk in travelers using real-world evidence
    Fleitas, Pedro Emanuel
    Sarasola, Leire Balerdi
    Ferrer, Daniel Camprubi
    Munoz, Jose
    Petrone, Paula
    HELIYON, 2024, 10 (07)
  • [48] How Real-World Data Can Facilitate the Development of Precision Medicine Treatment in Psychiatry
    Koch, Elise
    Pardinas, Antonio F.
    O'Connell, Kevin S.
    Selvaggi, Pierluigi
    Collados, Jose Camacho
    Babic, Aleksandar
    Marshall, Serena E.
    van der Eycken, Erik
    Angulo, Cecilia
    Lu, Yi
    Sullivan, Patrick F.
    Dale, Anders M.
    Molden, Espen
    Posthuma, Danielle
    White, Nathan
    Schubert, Alexander
    Djurovic, Srdjan
    Heimer, Hakon
    Stefansson, Hreinn
    Stefansson, Kari
    Werge, Thomas
    Sonderby, Ida
    O'Donovan, Michael C.
    Walters, James T. R.
    Milani, Lili
    Andreassen, Ole A.
    BIOLOGICAL PSYCHIATRY, 2024, 96 (07) : 543 - 551
  • [49] Applying machine learning techniques to predict the risk of lung metastases from rectal cancer: a real-world retrospective study
    Qiu, Binxu
    Shen, Zixiong
    Yang, Dongliang
    Wang, Quan
    FRONTIERS IN ONCOLOGY, 2023, 13
  • [50] Is Continuous Glucose Monitoring Effective? Evidence from Real-World Data
    Zheng, Yaguang
    Siminerio, Linda M.
    Anton, Bonnie
    Krall, Jodi T.
    Bednarz, Lori L.
    Li, Dan
    Ng, Jason
    DIABETES, 2020, 69