Dispersion characteristics and mechanical properties of epoxy nanocomposites reinforced with carboxymethyl cellulose functionalized nanodiamond, carbon nanotube, and graphene

被引:5
|
作者
Zhang, Dawei [1 ]
Huang, Ying [1 ]
Xia, Wenjie [2 ]
Xu, Luyang [1 ]
Wang, Xingyu [1 ,3 ]
机构
[1] North Dakota State Univ, Dept Civil Construct & Environm Engn, Fargo, ND USA
[2] Iowa State Univ, Dept Aerosp Engn, Ames, IA USA
[3] North Dakota State Univ, Dept Civil Construct & Environm Engn, CIE204,1340 Adm Ave, Fargo, ND 58108 USA
基金
美国国家科学基金会;
关键词
electron microscopy; mechanical properties; nanocomposites; particle size distribution; surfactants; RAMAN-SPECTROSCOPY; PERFORMANCE; NANOPLATELETS; SENSITIVITY; COMPOSITES;
D O I
10.1002/pc.27785
中图分类号
TB33 [复合材料];
学科分类号
摘要
Carbon-based nanoparticles are widely regarded as promising nanofillers in nanocomposites to pursue advanced properties. To date, there has been a lack of systematic investigation into the structural variations of nanofillers and their influences on dispersion characteristics, as well as the resulting mechanical properties of nanocomposites. In this study, nanodiamond (ND), carbon nanotube (CNT), and graphene (GNP) were selected as the representative zero-, one-, and two-dimensional nanofillers, respectively. A novel functionalization technique utilizing carboxymethyl cellulose (CMC) was employed to disperse nanofillers. The various characterization techniques and experimental results revealed that CMC functionalization was effective in reducing the agglomeration and improving the distribution uniformity of all three nanofillers. Among the three nanofillers, zero-dimensional ND exhibited the most homogeneous dispersion quality in epoxy nanocomposites. The strongest abrasion resistance was found in ND-reinforced epoxy nanocomposites, while CNT-reinforced epoxy nanocomposites exhibited the best tensile properties.HighlightsNanodiamond with a spherical structure had better dispersion characteristics.Cylindrical carbon nanotube and planar graphene tended to agglomerate.Nanodiamond reinforced nanocomposites had better abrasion resistance.Carbon nanotube reinforced nanocomposites had better tensile properties.Carboxymethyl cellulose functionalization was valid for all three nanofillers. Treatment procedures of the CMC funtionalization on the three carbonbased nanoparticles and their dispersion charateristics.image
引用
收藏
页码:398 / 412
页数:15
相关论文
共 50 条
  • [31] Mechanical and electrical properties of graphene and carbon nanotube reinforced epoxy adhesives: Experimental and numerical analysis
    Han, Sensen
    Meng, Qingshi
    Arabya, Sherif
    Liu, Tianqing
    Demiral, Murat
    COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2019, 120 : 116 - 126
  • [32] Epoxy Nanocomposites Reinforced with Functionalized Carbon Nanotubes
    Mostovoy, Anton
    Yakovlev, Andrey
    Tseluikin, Vitaly
    Lopukhova, Marina
    POLYMERS, 2020, 12 (08)
  • [33] Investigating the Effects of Amine Functionalized Graphene on the Mechanical Properties of Epoxy Nanocomposites
    Yadav, Anurag
    Kumar, Amit
    Sharma, Kamal
    Shukla, Manoj K.
    MATERIALS TODAY-PROCEEDINGS, 2019, 11 : 837 - 842
  • [34] Mechanical properties of carbon fiber reinforced epoxy/clay nanocomposites
    Xu, Yuan
    Van Hoa, Suong
    COMPOSITES SCIENCE AND TECHNOLOGY, 2008, 68 (3-4) : 854 - 861
  • [35] Graphene Nanoplatelets in Epoxy System: Dispersion, Reaggregation, and Mechanical Properties of Nanocomposites
    Wei, Jiacheng
    Atif, Rasheed
    Vo, Thuc
    Inam, Fawad
    JOURNAL OF NANOMATERIALS, 2015, 2015
  • [36] Electrical and mechanical properties of graphene/carbon nanotube hybrid nanocomposites
    Al-Saleh, Mohammed H.
    SYNTHETIC METALS, 2015, 209 : 41 - 46
  • [37] Graphene Nanosheets Reinforced Epoxy Nanocomposites: Mechanical and Electrical Properties Evaluation
    F. Vahedi
    M. Eskandarzade
    K. Osouli-Bostanabad
    A. Tutunchi
    Polymer Science, Series A, 2018, 60 : 854 - 865
  • [38] Mechanical and Thermal Properties of Epoxy Resin Nanocomposites Reinforced with Graphene Oxide
    Liu, Qinghong
    Zhou, Xufeng
    Fan, Xinyu
    Zhu, Chunyang
    Yao, Xiayin
    Liu, Zhaoping
    POLYMER-PLASTICS TECHNOLOGY AND ENGINEERING, 2012, 51 (03) : 251 - 256
  • [39] Graphene Nanosheets Reinforced Epoxy Nanocomposites: Mechanical and Electrical Properties Evaluation
    Vahedi, F.
    Eskandarzade, M.
    Osouli-Bostanabad, K.
    Tutunchi, A.
    POLYMER SCIENCE SERIES A, 2018, 60 (06) : 854 - 865
  • [40] Mechanical, thermal and microstructural characteristics of cellulose fibre reinforced epoxy/organoclay nanocomposites
    Alamri, H.
    Low, I. M.
    Alothman, Z.
    COMPOSITES PART B-ENGINEERING, 2012, 43 (07) : 2762 - 2771