FlexEdge: Digital Twin-Enabled Task Offloading for UAV-Aided Vehicular Edge Computing

被引:22
|
作者
Li, Bin [1 ,2 ]
Xie, Wancheng [1 ,2 ]
Ye, Yinghui [3 ]
Liu, Lei [4 ]
Fei, Zesong [5 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Sch Comp Sci, Nanjing 210044, Peoples R China
[2] Nanjing Univ Informat Sci & Technol, Jiangsu Collaborat Innovat Ctr Atmospher Environm, Nanjing 210044, Peoples R China
[3] Xian Univ Posts & Telecommun, Shaanxi Key Lab Informat Commun Network & Secur, Xian 710121, Peoples R China
[4] Xidian Univ, Guangzhou Inst Technol, Guangzhou 510555, Peoples R China
[5] Beijing Inst Technol, Sch Informat & Elect, Beijing 100081, Peoples R China
基金
中国国家自然科学基金;
关键词
Digital twin; vehicular edge computing; UAV; proximal policy optimization; NETWORKS;
D O I
10.1109/TVT.2023.3262261
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Integrating unmanned aerial vehicles (UAVs) into vehicular networks have shown high potentials in affording intensive computing tasks. In this paper, we study the digital twin driven vehicular edge computing networks for adaptively computing resource management where an unmanned aerial vehicle (UAV) named FlexEdge acts as a flying server. In particular, we first formulate an energy consumption minimization problem by jointly optimizing UAV trajectory and computation resource under the practical constraints. To address such a challenging problem, we then build the computation offloading process as a Markov decision process and propose a deep reinforcement learning-based proximal policy optimization algorithm to dynamically learn the computation offloading strategy and trajectory design policy. Numerical results indicate that our proposed algorithm can achieve quick convergence rate and significantly reduce the system energy consumption.
引用
收藏
页码:11086 / 11091
页数:6
相关论文
共 50 条
  • [21] Digital twin assisted multi-task offloading for vehicular edge computing under SAGIN with blockchain
    Chen, Qiyong
    Li, Chunhai
    Chen, Mingfeng
    Wu, Maoqiang
    Zhang, Gen
    IET COMMUNICATIONS, 2025, 19 (01)
  • [22] MUTAA: An online trajectory optimization and task scheduling for UAV-aided edge computing
    Ye, Weidu
    Luo, Junzhou
    Wu, Wenjia
    Shan, Feng
    Yang, Ming
    COMPUTER NETWORKS, 2022, 218
  • [23] Digital Twin-Enabled Service Provisioning in Edge Computing via Continual Learning
    Li, Jing
    Guo, Song
    Liang, Weifa
    Wang, Jianping
    Chen, Quan
    Zeng, Yue
    Ye, Baoliu
    Jia, Xiaohua
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2024, 23 (06) : 7335 - 7350
  • [24] UAV-Aided Computation Offloading in Mobile-Edge Computing Networks: A Stackelberg Game Approach
    Zhou, Huan
    Wang, Zhenning
    Min, Geyong
    Zhang, Haijun
    IEEE INTERNET OF THINGS JOURNAL, 2023, 10 (08) : 6622 - 6633
  • [25] Federated Learning-Based Task Offloading in a UAV-Aided Cloud Computing Mobile Network
    Agarwal, Nipun
    Joshi, Sandeep
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2024, 73 (10) : 15751 - 15756
  • [26] Intelligent Task Offloading and Energy Allocation in the UAV-Aided Mobile Edge-Cloud Continuum
    Cheng, Zhipeng
    Gao, Zhibin
    Liwang, Minghui
    Huang, Lianfen
    Du, Xiaojiang
    Guizani, Mohsen
    IEEE NETWORK, 2021, 35 (05): : 42 - 49
  • [27] Digital Twin Assisted Task Offloading for Aerial Edge Computing and Networks
    Li, Bin
    Liu, Yufeng
    Tan, Ling
    Pan, Heng
    Zhang, Yan
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2022, 71 (10) : 10863 - 10877
  • [28] Task offloading scheme of vehicular cloud edge computing based on Digital Twin and improved A3C
    Zhu, Lin
    Tan, Long
    INTERNET OF THINGS, 2024, 26
  • [29] Digital Twin-Aided Intelligent Offloading With Edge Selection in Mobile Edge Computing
    Tan Do-Duy
    Huynh, Dang Van
    Dobre, Octavia A.
    Canberk, Berk
    Duong, Trung Q.
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2022, 11 (04) : 806 - 810
  • [30] A Combinatorial Bandit Approach to UAV-aided Edge Computing
    Wu, Bochun
    Chen, Tianyi
    Wang, Xin
    2020 54TH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS, AND COMPUTERS, 2020, : 304 - 308