Using kinetics to avoid sigma phase formation on hyper duplex stainless weld cladding

被引:6
|
作者
Acuna, Andres [1 ]
Ramirez, Antonio [1 ,3 ]
Riffel, Kaue Correa [1 ,2 ]
机构
[1] Ohio State Univ Columbus, Dept Mat Sci & Engn, Columbus, OH USA
[2] Univ Fed Santa Catarina Florianopolis, Dept Mech Engn, Florianopolis, Brazil
[3] Ohio State Univ, Dept Mat Sci & Engn, 1248 Arthur E Adams Dr, Columbus, OH 43221 USA
基金
美国国家科学基金会;
关键词
Weld-overlay; GTAW; weld cladding; precipitation; intermetallic phases; filler metal; MECHANICAL-PROPERTIES; SECONDARY AUSTENITE; INTERGRANULAR CORROSION; DELETERIOUS PHASES; PITTING CORROSION; CHROMIUM NITRIDE; PRECIPITATION; TRANSFORMATION; STEELS; SUPER;
D O I
10.1080/13621718.2023.2246719
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The Hyper Duplex Stainless Steel HDSS enhanced corrosion resistance and toughness relies upon high alloying to obtain a balanced ferrite and austenite volume and pitting resistance equivalent number PREn. However, during welding, sigma phase precipitates might form, hindering corrosion and mechanical performance. Therefore, a kinetics model is developed to avoid the sigma phase's formation during welding and validated using physical simulation, finite element analysis (FEA), welding, and SEM characterisation. The sigma phase kinetics model produced calculated and validated temperature-time-transformation (TTT) and continuous-cooling-transformation (CCT) curves from which a 4 & DEG;C/s cooling rate was found as a cooling rate threshold for sigma phase formation in this new material. Three-layered gas tungsten arc welding GTAW cladded mockup with 53 beads produced 24 & DEG;C/s minimum cooling rate. Moreover, microscopy, mechanical, and corrosion testing attested it as a sigma-free weld.
引用
收藏
页码:885 / 893
页数:9
相关论文
共 50 条
  • [21] Corrosion and cracking characteristics upon aging of hyper duplex stainless steel weld
    Kim, Dong-Hyun
    Kim, No-Hoon
    Lee, Hae-Woo
    MATERIALS SCIENCE AND TECHNOLOGY, 2020, 36 (07) : 783 - 792
  • [22] SPHEROIDISATION KINETICS OF SIGMA PHASE IN AGED 316L STAINLESS WELD METAL.
    Gill, T.P.S.
    Vijayalakshmi, M.
    Gamamoorthy, J.B.
    Indian Welding Journal, 1987, 19 (02): : 200 - 209
  • [23] Sigma-phase in duplex-stainless steels
    Pohl, M
    Storz, O
    ZEITSCHRIFT FUR METALLKUNDE, 2004, 95 (07): : 631 - 638
  • [24] Sigma phase precipitation in duplex stainless steel 2205
    Sieurin, Henrik
    Sandstrom, Rolf
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2007, 444 (1-2): : 271 - 276
  • [25] Simulation of the precipitation of sigma phase in duplex stainless steels
    M. B. Cortie
    E. M. L. E. M. Jackson
    Metallurgical and Materials Transactions A, 1997, 28 : 2477 - 2484
  • [26] Simulation of the precipitation of sigma phase in duplex stainless steels
    Cortie, MB
    Jackson, EMLEM
    METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 1997, 28 (12): : 2477 - 2484
  • [27] Characterization of Sigma Phase Duplex Stainless Steels Using Nondestructive Ultrasonic Techniques
    Rodriguez, Cristina
    Biezma, Victoria
    Fernandez, Monica
    MATERIALS TESTING, 2013, 55 (06) : 448 - 454
  • [28] Macro and Micro Electrochemical Techniques to Study Influence of Sigma Phase Formation in a Duplex Stainless Steel
    Kumar, Sunil B.
    Kain, Vivekanand
    CENTURY OF STAINLESS STEELS, 2013, 794 : 583 - 591
  • [29] Sigma Phase Precipitation and its Influence on Hydrogen Induced Cracking of Duplex Stainless Steel Base Metal and Weld Metal
    K. Nakade
    Welding in the World, 2003, 47 (9-10) : 9 - 20
  • [30] Effect of Sigma Phase on Corrosion Behavior of Duplex Stainless Steel
    Nagae, Koichiro
    Ejiri, Kento
    Hirabayashi, Jyunichi
    Yamamoto, Yuichi
    Hatakeyama, Masahiko
    Sunada, Satoshi
    MATERIALS TRANSACTIONS, 2022, 63 (05) : 726 - 729