The Benefits of Using State-Of-The-Art Digital Soil Properties Maps to Improve the Modeling of Soil Moisture in Land Surface Models

被引:8
|
作者
Xu, Chengcheng [1 ]
Torres-Rojas, Laura [1 ]
Vergopolan, Noemi [2 ,3 ]
Chaney, Nathaniel W. [1 ]
机构
[1] Duke Univ, Dept Civil & Environm Engn, Durham, NC 27708 USA
[2] Princeton Univ, Program Atmospher & Ocean Sci, Princeton, NJ USA
[3] NOAA, Geophys Fluid Dynam Lab, Princeton, NJ USA
关键词
maps of soil properties; vertical heterogeneity; land surface modeling; soil moisture; in situ observations; pedotransfer functions; CLIMATE REFERENCE NETWORK; PEDOTRANSFER FUNCTIONS; PARAMETER SENSITIVITY; HYDRAULIC PARAMETERS; WATER RETENTION; DATABASE; SCALE; FLUXES; HETEROGENEITY; HYDROBLOCKS;
D O I
10.1029/2022WR032336
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This study assesses the added value of using emerging maps of soil properties to improve surface soil moisture simulations using the HydroBlocks land surface model with different soil hydraulic parameterization schemes. Simulations were run at an hourly 30-m resolution between 2012 and 2019 and evaluated against U.S. Climate Reference Network measurements. The results show that state-of-the-art soil properties maps (POLARIS and SoilGrids250m V2.0) improve the accuracy of simulated surface soil moisture when compared to the STATSGO-derived CONUS-SOIL map. Contemporary pedotransfer functions (multi-linear regression and Artificial Neural Networks-based) also improve model performance in comparison to the lookup table-derived soil parameterization schemes. The addition of vertical heterogeneity to the soil properties further improves the mean Kling-Gupta efficiency by 0.04 and lowers the mean Root mean square error by 0.003 over the CONUS. This study demonstrates that land surface modeling can be improved by using state-of-the-art maps of soil properties, accounting for the vertical heterogeneity of soils, and advancing the use of contemporary pedotransfer functions.
引用
收藏
页数:21
相关论文
共 50 条
  • [41] Modeling soil moisture: A project for intercomparison of land surface parameterization schemes phase 2(b)
    Shao, YP
    Henderson-Sellers, A
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1996, 101 (D3) : 7227 - 7250
  • [42] Assimilation of Satellite-Derived Soil Moisture and Brightness Temperature in Land Surface Models: A Review
    Khandan, Reza
    Wigneron, Jean-Pierre
    Bonafoni, Stefania
    Biazar, Arastoo Pour
    Gholamnia, Mehdi
    REMOTE SENSING, 2022, 14 (03)
  • [43] Estimating soil moisture at the watershed scale with satellite-based radar and land surface models
    Moran, MS
    Peters-Lidard, CD
    Watts, JM
    McElroy, S
    CANADIAN JOURNAL OF REMOTE SENSING, 2004, 30 (05) : 805 - 826
  • [44] COMPARED PERFORMANCES OF MICROWAVE PASSIVE SOIL MOISTURE RETRIEVALS (SMOS) AND ACTIVE SOIL MOISTURE RETRIEVALS (ASCAT) USING LAND SURFACE MODEL ESTIMATES (MERRA-LAND)
    Al-Yaari, A.
    Wigneron, J-. P.
    Ducharne, A.
    Kerr, Y.
    Wagner, W.
    Reichle, R.
    De lannoy, G.
    Al Bi-tar, A.
    Dorigo, W.
    Parrens, M.
    Fernandez, R.
    Richaume, P.
    Mialon, A.
    2014 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2014, : 2463 - 2466
  • [45] Towards Land Surface Model Validation from Using Satellite Retrieved Soil Moisture
    Yee, M.
    Walker, J. P.
    Dumedah, G.
    Monerris, A.
    Ruediger, C.
    20TH INTERNATIONAL CONGRESS ON MODELLING AND SIMULATION (MODSIM2013), 2013, : 2890 - 2896
  • [46] Calibration of Land Surface Model Using Remotely Sensed Evapotranspiration and Soil Moisture Predictions
    Poovakka, A. Kunnath
    Ryu, D.
    Renzullo, L. J.
    Pipunic, R.
    George, B.
    20TH INTERNATIONAL CONGRESS ON MODELLING AND SIMULATION (MODSIM2013), 2013, : 3113 - 3119
  • [47] Estimation of soil moisture and soil temperature over India using the Noah multi-parameterisation land surface model
    Chawang, Noel M.
    Sakuru, Sai Krishna V. S.
    Sampelli, Anoop
    Jella, Srinivasulu
    Rao, Kusuma G.
    Ramana, M., V
    MODELING EARTH SYSTEMS AND ENVIRONMENT, 2023, 9 (02) : 1873 - 1889
  • [48] Evaluation of global terrestrial evapotranspiration using state-of-the-art approaches in remote sensing, machine learning and land surface modeling
    Pan, Shufen
    Pan, Naiqing
    Tian, Hanqin
    Friedlingstein, Pierre
    Sitch, Stephen
    Shi, Hao
    Arora, Vivek K.
    Haverd, Vanessa
    Jain, Atul K.
    Kato, Etsushi
    Lienert, Sebastian
    Lombardozzi, Danica
    Nabel, Julia E. M. S.
    Otte, Catherine
    Poulter, Benjamin
    Zaehle, Soenke
    Running, Steven W.
    HYDROLOGY AND EARTH SYSTEM SCIENCES, 2020, 24 (03) : 1485 - 1509
  • [49] Estimation of soil moisture and soil temperature over India using the Noah multi-parameterisation land surface model
    Noel M. Chawang
    Sai Krishna V. S. Sakuru
    Anoop Sampelli
    Srinivasulu Jella
    Kusuma G. Rao
    M. V. Ramana
    Modeling Earth Systems and Environment, 2023, 9 : 1873 - 1889
  • [50] Estimation of Surface Soil Moisture With Downscaled Land Surface Temperatures Using a Data Fusion Approach for Heterogeneous Agricultural Land
    Bai, Liangliang
    Long, Di
    Yan, La
    WATER RESOURCES RESEARCH, 2019, 55 (02) : 1105 - 1128