A Deep Learning System to Predict Recurrence and Disability Outcomes in Patients with Transient Ischemic Attack or Ischemic Stroke

被引:6
|
作者
Jing, Jing [1 ,2 ]
Liu, Ziyang [3 ]
Guan, Hao [4 ]
Zhu, Wanlin [2 ]
Zhang, Zhe [2 ]
Meng, Xia [2 ]
Cheng, Jian [5 ]
Pan, Yuesong [2 ]
Jiang, Yong [2 ]
Wang, Yilong [1 ,2 ]
Niu, Haijun [3 ]
Zhao, Xingquan [2 ]
Wen, Wei [6 ,7 ]
Lin, Jinxi [2 ]
Li, Wei [2 ]
Li, Hao [2 ]
Sachdev, Perminder S. S. [6 ,7 ]
Liu, Tao [3 ]
Li, Zixiao [1 ,2 ]
Tao, Dacheng [8 ]
Wang, Yongjun [1 ,2 ]
机构
[1] Capital Med Univ, Beijing Tiantan Hosp, Dept Neurol, Beijing 10070, Peoples R China
[2] Capital Med Univ, Beijing Tiantan Hosp, China Natl Clin Res Ctr Neurol Dis, Beijing 100070, Peoples R China
[3] Beihang Univ, Beijing Adv Innovat Ctr Biomed Engn, Sch Biol Sci & Med Engn, Beijing 100191, Peoples R China
[4] Univ Sydney, UBTech Sydney Artificial Intelligence Inst, Sch Comp Sci, FEIT, Camperdown, NSW 2006, Australia
[5] Beihang Univ, Sch Comp Sci & Engn, Beijing 100191, Peoples R China
[6] UNSW, Ctr Hlth Brain Ageing CHeBA, Sch Psychiat, Sydney, NSW 2052, Australia
[7] Prince Wales Hosp, Neuropsychiat Inst, Sydney, NSW 2052, Australia
[8] JD Explore Acad JD com, Beijing 101111, Peoples R China
基金
北京市自然科学基金; 中国国家自然科学基金; 澳大利亚研究理事会;
关键词
deep learning; ischemic stroke; prognosis prediction; risk stratification; transient ischemic attacks; INTRACRANIAL HEMORRHAGE; ARTIFICIAL-INTELLIGENCE; ABCD2; SCORE; RISK SCORE; PREVENTION; TICAGRELOR; RATIONALE; PROGNOSIS; ASPIRIN; SCALE;
D O I
10.1002/aisy.202200240
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Ischemic strokes (IS) and transient ischemic attacks (TIA) account for approximately 80% of all strokes and are leading causes of death worldwide. Assessing the risk of recurrence or functional impairment in IS and TIA patients is essential to both acute phase treatment and secondary prevention. Current risk prediction systems that rely on clinical parameters alone without leveraging imaging data have only modest performance. Herein, a deep learning-based risk prediction system (RPS) is developed to predict the probability of stroke recurrence or disability (i.e., deep-learning stroke recurrence risk score, SRR score). Then, Kaplan-Meier analysis to evaluate the ability of SRR score to stratify patients at stroke recurrence risk is discussed. Using 15 166 Third China National Stroke Registry (CNSR-III) cases, the RPS's receiver operating characteristic curve (AUC) values of 0.850 for 14 day TIA recurrence prediction and 0.837 for 3 month IS disability prediction are used. Among patients deemed high risk by SRR score, 22.9% and 24.4% of individuals with TIA and IS respectively have stroke recurrence within 1 year, which are significantly higher than the rates in low-risk individuals. Deep learning-based RPS can outperform conventional risk scores and has the potential to assist accurate prognostication in stroke patients to optimize management.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] MANAGING TRANSIENT ISCHEMIC ATTACK AND ISCHEMIC STROKE
    MCIRVINE, AJ
    HIGMAN, DJ
    FRANKS, PJ
    BMJ-BRITISH MEDICAL JOURNAL, 1992, 305 (6867): : 1498 - 1498
  • [22] MANAGING TRANSIENT ISCHEMIC ATTACK AND ISCHEMIC STROKE
    MARTIN, PJ
    GAUNT, ME
    BELL, PRF
    BRITISH MEDICAL JOURNAL, 1992, 305 (6867): : 1499 - 1499
  • [23] Lipidomic signature of stroke recurrence after transient ischemic attack
    F. Purroy
    A. Ois
    M. Jove
    G. Arque
    J. Sol
    G. Mauri-Capdevila
    A. Rodriguez-Campello
    R. Pamplona
    M. Portero
    J. Roquer
    Scientific Reports, 13
  • [24] Lipidomic signature of stroke recurrence after transient ischemic attack
    Purroy, F.
    Ois, A.
    Jove, M.
    Arque, G.
    Sol, J.
    Mauri-Capdevila, G.
    Rodriguez-Campello, A.
    Pamplona, R.
    Portero, M.
    Roquer, J.
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [25] Metabolomics predicts stroke recurrence after transient ischemic attack
    Jove, Mariona
    Mauri-Capdevila, Gerard
    Suarez, Idalmis
    Cambray, Serafi
    Sanahuja, Jordi
    Quilez, Alejandro
    Farre, Joan
    Benabdelhak, Ikram
    Pamplona, Reinald
    Portero-Otin, Manuel
    Purroy, Francisco
    NEUROLOGY, 2015, 84 (01) : 36 - 45
  • [26] METABOLOMICS PREDICTS STROKE RECURRENCE AFTER TRANSIENT ISCHEMIC ATTACK
    Purroy, F.
    Jove, M.
    Mauri-Capdevila, G.
    Suarez, I.
    Cambray, S.
    Sanahuja, J.
    Benabdelhak, I.
    Farre, J.
    Portero-Otin, M.
    CEREBROVASCULAR DISEASES, 2014, 37 : 159 - 160
  • [27] Stroke and Transient Ischemic Attack
    Banyas, Paige
    Jadhav, Ashutosh
    PRIMARY CARE, 2024, 51 (02): : 283 - 297
  • [28] Epidemiology and Outcomes of Ischemic Stroke and Transient Ischemic Attack in the Adult and Geriatric Population
    Navis, Allison
    Garcia-Santibanez, Rocio
    Skliut, Maryna
    JOURNAL OF STROKE & CEREBROVASCULAR DISEASES, 2019, 28 (01): : 84 - 89
  • [29] Epidemiology and Outcomes of Ischemic Stroke and Transient Ischemic Attack in the Adult and Geriatric Population
    Navis, Allison
    Skliut, Maryna
    Lucido, David
    Garcia-Santibanez, Rocio
    NEUROLOGY, 2016, 86