A Deep Learning System to Predict Recurrence and Disability Outcomes in Patients with Transient Ischemic Attack or Ischemic Stroke

被引:6
|
作者
Jing, Jing [1 ,2 ]
Liu, Ziyang [3 ]
Guan, Hao [4 ]
Zhu, Wanlin [2 ]
Zhang, Zhe [2 ]
Meng, Xia [2 ]
Cheng, Jian [5 ]
Pan, Yuesong [2 ]
Jiang, Yong [2 ]
Wang, Yilong [1 ,2 ]
Niu, Haijun [3 ]
Zhao, Xingquan [2 ]
Wen, Wei [6 ,7 ]
Lin, Jinxi [2 ]
Li, Wei [2 ]
Li, Hao [2 ]
Sachdev, Perminder S. S. [6 ,7 ]
Liu, Tao [3 ]
Li, Zixiao [1 ,2 ]
Tao, Dacheng [8 ]
Wang, Yongjun [1 ,2 ]
机构
[1] Capital Med Univ, Beijing Tiantan Hosp, Dept Neurol, Beijing 10070, Peoples R China
[2] Capital Med Univ, Beijing Tiantan Hosp, China Natl Clin Res Ctr Neurol Dis, Beijing 100070, Peoples R China
[3] Beihang Univ, Beijing Adv Innovat Ctr Biomed Engn, Sch Biol Sci & Med Engn, Beijing 100191, Peoples R China
[4] Univ Sydney, UBTech Sydney Artificial Intelligence Inst, Sch Comp Sci, FEIT, Camperdown, NSW 2006, Australia
[5] Beihang Univ, Sch Comp Sci & Engn, Beijing 100191, Peoples R China
[6] UNSW, Ctr Hlth Brain Ageing CHeBA, Sch Psychiat, Sydney, NSW 2052, Australia
[7] Prince Wales Hosp, Neuropsychiat Inst, Sydney, NSW 2052, Australia
[8] JD Explore Acad JD com, Beijing 101111, Peoples R China
基金
澳大利亚研究理事会; 北京市自然科学基金; 中国国家自然科学基金;
关键词
deep learning; ischemic stroke; prognosis prediction; risk stratification; transient ischemic attacks; INTRACRANIAL HEMORRHAGE; ARTIFICIAL-INTELLIGENCE; ABCD2; SCORE; RISK SCORE; PREVENTION; TICAGRELOR; RATIONALE; PROGNOSIS; ASPIRIN; SCALE;
D O I
10.1002/aisy.202200240
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Ischemic strokes (IS) and transient ischemic attacks (TIA) account for approximately 80% of all strokes and are leading causes of death worldwide. Assessing the risk of recurrence or functional impairment in IS and TIA patients is essential to both acute phase treatment and secondary prevention. Current risk prediction systems that rely on clinical parameters alone without leveraging imaging data have only modest performance. Herein, a deep learning-based risk prediction system (RPS) is developed to predict the probability of stroke recurrence or disability (i.e., deep-learning stroke recurrence risk score, SRR score). Then, Kaplan-Meier analysis to evaluate the ability of SRR score to stratify patients at stroke recurrence risk is discussed. Using 15 166 Third China National Stroke Registry (CNSR-III) cases, the RPS's receiver operating characteristic curve (AUC) values of 0.850 for 14 day TIA recurrence prediction and 0.837 for 3 month IS disability prediction are used. Among patients deemed high risk by SRR score, 22.9% and 24.4% of individuals with TIA and IS respectively have stroke recurrence within 1 year, which are significantly higher than the rates in low-risk individuals. Deep learning-based RPS can outperform conventional risk scores and has the potential to assist accurate prognostication in stroke patients to optimize management.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] RECURRENCE OF ISCHEMIC STROKE IN PATIENTS WITH PREVIOUS TRANSIENT ISCHEMIC ATTACK
    Amaya, P.
    Arteaga, C.
    Serrano, F.
    Lopez, F.
    Espinosa, F.
    Arauz, A.
    INTERNATIONAL JOURNAL OF STROKE, 2018, 13 : 112 - 113
  • [2] Electrolytes and clinical outcomes in patients with acute ischemic stroke or transient ischemic attack
    Wang, Anxin
    Tian, Xue
    Gu, Hongqiu
    Zuo, Yingting
    Meng, Xia
    Chen, Pan
    Li, Hao
    Wang, Yongjun
    ANNALS OF TRANSLATIONAL MEDICINE, 2021, 9 (13)
  • [3] Prevention of stroke in patients with ischemic stroke or transient ischemic attack
    Borja, Javier
    Izquierdo, Inaki
    Garcia-Rafanell, Julian
    STROKE, 2006, 37 (11) : 2653 - 2653
  • [4] Early Recurrence or Worsening of Transient Ischemic Attack or Minor Ischemic Stroke
    Yamamoto, Yasumasa
    Nagakane, Yoshinari
    Makita, Naoki
    Ashida, Shinji
    STROKE, 2015, 46
  • [5] Clinical features of transient ischemic attack or ischemic stroke patients at high recurrence risk in Indonesia
    Akbar, M.
    Misbach, J.
    Susatia, F.
    Rasyid, A.
    Alfa, A. Yasmar
    Syamsudin, T.
    Kustiowati, E.
    Tjahjadi, M. Inggrid
    Haddani, M. Hasnawi
    Zakaria, T. Suwirno
    Suratno
    Amalia, L.
    Birawa, A. Basuki Prima
    Tugasworo, D.
    Setyopranoto, I.
    Raharjo, E.
    Purwata, T. Eko
    Made, O. Adnyana I.
    NEUROLOGY ASIA, 2018, 23 (02) : 107 - 113
  • [6] Microembolic signals in patients with ischemic stroke or transient ischemic attack as a risk factor for early recurrence
    Valton, L
    Larrue, V
    leTraon, AP
    Geraud, G
    Bes, A
    NEUROLOGY, 1996, 46 (02) : 4053 - 4053
  • [7] SILENT STROKE IN PATIENTS WITH TRANSIENT ISCHEMIC ATTACK OR MINOR ISCHEMIC STROKE
    HERDERSCHEE, D
    HIJDRA, A
    ALGRA, A
    KOUDSTAAL, PJ
    KAPPELLE, LJ
    VANGIJN, J
    STROKE, 1992, 23 (09) : 1220 - 1224
  • [8] Transient ischemic attack and ischemic stroke patients with or without prior stroke
    Buchwald, F.
    Norrving, B.
    Petersson, J.
    ACTA NEUROLOGICA SCANDINAVICA, 2017, 136 (06): : 654 - 659
  • [9] Recurrent Ischemic Stroke and Transient Ischemic Attack: Risk of Single and Multiple Recurrence
    Park, Moon-Ho
    Lee, Sang-Hun
    Jung, Jin-Man
    JOURNAL OF CLINICAL MEDICINE, 2024, 13 (19)
  • [10] COMPUTED-TOMOGRAPHY IN PATIENTS WITH TRANSIENT ISCHEMIC ATTACKS - WHEN IS A TRANSIENT ISCHEMIC ATTACK NOT A TRANSIENT ISCHEMIC ATTACK BUT A STROKE
    DENNIS, M
    BAMFORD, J
    SANDERCOCK, P
    MOLYNEUX, A
    WARLOW, C
    JOURNAL OF NEUROLOGY, 1990, 237 (04) : 257 - 261